Elasticity Constitutive Models#

The Jacobian for the elasticity equation (19) is

(36)#\[J_{f3}^{uu} = \frac{\partial F^{u_{i}}}{\partial u_{j}}.\]

In computing the derivative, we consider the linearized form:

(37)#\[\begin{split}\begin{gathered} \sigma_{ik} = C_{ikjl} \epsilon_{jl} \\ \sigma_{ik} = C_{ikjl} \frac{1}{2}\left(u_{j,l} + u_{l,j}\right) \\ \sigma_{ik} = \frac{1}{2}\left(C_{ikjl} + C_{iklj}\right)u_{j,l} \\ \sigma_{ik} = C_{ikjl} u_{j,l}. \\ \end{gathered}\end{split}\]

In computing the Jacobian, we take the derivative of the stress tensor with respect to the displacement field,

(38)#\[\frac{\partial}{\partial u_{j}}\sigma_{ik} = C_{ikjl} {\psi_\mathit{basis^{}}^{u}}_{j,l},\]

so we have

(39)#\[J_{f3}^{uu}(i,j,k,l) = -C_{ikjl}.\]

For many elasticity constitutive models we prefer to separate the stress into the mean stress and deviatoric stress:

(40)#\[\begin{split}\begin{gathered} \boldsymbol{\sigma} = \sigma^{mean} \boldsymbol{I} + \boldsymbol{\sigma}^{dev}, \text{where} \\ \sigma^{mean} = \frac{1}{3}\mathrm{Tr}(\boldsymbol{\sigma}) = \frac{1}{3}\left(\sigma_{11} + \sigma_{22} + \sigma_{33}\right). \\ \end{gathered}\end{split}\]

Sometimes it is convenient to use pressure (positive pressure corresponds to compression) instead of the mean stress:

(41)#\[\begin{split}\begin{gathered} \boldsymbol{\sigma} = -p \boldsymbol{I} + \boldsymbol{\sigma}^{dev}, \text{where} \\ p = -\frac{1}{3}\mathrm{Tr}(\boldsymbol{\sigma}). \\ \end{gathered}\end{split}\]

The Jacobian with respect to the deviatoric stress is

(42)#\[\begin{split}\begin{gathered} \frac{\partial \sigma_{ik}^{dev}}{\partial u_{j}} = \frac{\partial}{\partial u_{j}}\left(\sigma_{ik} - \frac{1}{3}\sigma_{mm}\delta_{ik}\right) \\ \frac{\partial \sigma_{ik}^{dev}}{\partial u_{j}} = C_{ikjl} {\psi_\mathit{basis^{}}^{u}}_{j,l} - \frac{1}{3}C_{mmjl} \delta_{ik}{\psi_\mathit{basis^{}}^{u}}_{j,l}. \end{gathered}\end{split}\]

We call these modified elastic constants \(C_{ijkl}^{dev}\), so that we have

(43)#\[C_{ikjl}^{dev} = C_{ikjl} - \frac{1}{3}C_{mmjl} \delta_{ik}.\]