Derivation of Elasticity Equation#

For completeness we start our discussion of the governing equations with a derivation of the elasticity equation. Consider domain \(\Omega\) bounded by boundary \(\Gamma\). Applying a Lagrangian description of the conservation of momentum gives

(1)#\[\frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega=\int_{\Omega}\vec{f}(\vec{x},t)\, d\ + \int_{\Gamma}\vec{\tau}(\vec{x},t)\, d\Gamma.\]

The traction vector field is related to the stress tensor through

(2)#\[\begin{equation} \vec{\tau}(\vec{x},t) = \boldsymbol{\sigma}(\vec{u}) \cdot \vec{n}, \end{equation}\]

where \(\vec{n}\) is the outward normal vector to \(\Gamma\). Substituting into equation (1) yields

(3)#\[\begin{equation} \frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega = \int_{\Omega}\vec{f}(\vec{x},t)\, d\Omega+\int_{\Gamma}\boldsymbol{\sigma}(\vec{u})\cdot\vec{n}\, d\Gamma. \end{equation}\]

Applying the divergence theorem,

(4)#\[\begin{equation} \int_{\Omega}\boldsymbol{\nabla}\cdot\vec{a}\: d\Omega=\int_{\Gamma}\vec{a}\cdot\vec{n}\: d\Gamma, \end{equation}\]

to the boundary integral results in

(5)#\[\begin{equation} \frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega=\int_{\Omega}\vec{f}(\vec{x},t)\, d\Omega+\int_{\Omega}\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}(\vec{u})\, d\Omega, \end{equation}\]

which we can rewrite as

(6)#\[\begin{equation} \int_{\Omega}\left(\rho(\vec{x})\frac{\partial^{2}\vec{u}}{\partial t^{2}}-\vec{f}(\vec{x},t)-\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}(\vec{u})\right)\, d\Omega=\vec{0}. \end{equation}\]

Because the domain \(\Omega\) is arbitrary, the integrand must be the zero vector at every location in the domain, so that we end up with

(7)#\[\begin{gather} \rho(\vec{x})\frac{\partial^{2}\vec{u}}{\partial t^{2}}-\vec{f}(\vec{x},t)-\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}=\vec{0}\text{ in }\Omega,\\ \boldsymbol{\sigma}(\vec{u})\cdot\vec{n}=\vec{\tau}(\vec{x},t)\text{ on }\Gamma_{\tau}\text{,}\\ \vec{u}=\vec{u}_0(\vec{x},t)\text{ on }\Gamma_{u},\text{ and}\\ \vec{u}^{+}-\vec{u}^{-}=\vec{d}\text{ on }\Gamma_{f}. \end{gather}\]

We specify tractions, \(\vec{\tau}\), on boundary \(\Gamma_{f}\), displacements, \(\vec{u^{o}}\), on boundary \(\Gamma_{u}\), and slip, \(\vec{d}\), on fault interface \(\Gamma_{f}\).