References#

[AWK07]

B. Aagaard, C. Williams, and M. Knepley. Pylith: a finite-element code for modeling quasistatic and dynamic crustal deformation. In Eos Trans. Fall Meet. Suppl., volume 88. AGU, 2007. Abstract T21B-0592.

[AHH01a]

Brad T. Aagaard, John F. Hall, and Thomas H. Heaton. Characterization of near-source ground motions with earthquake simulations. Earthquake Spectra, 17(2):177–207, May 2001.

[AHH01b]

Brad T. Aagaard, Thomas H. Heaton, and John F. Hall. Dynamic earthquake ruptures in the presence of lithostatic normal stresses: implications for friction models and heat production. Bulletin of the Seismological Society of America, 91(6):1765–1796, December 2001.

[Bat95]

K.-J. Bathe. Finite-Element Procedures. Prentice Hall, Upper Saddle River, New Jersey, 1995. 1037 pp.

[Bru70]

James N. Brune. Tectonic stress and spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75:4997–5009, September 10 1970.

[CH23]

Colin Cotter and David Ham. Finite Elements analysis and implementation. Imperial College, London, 2023. URL: https://finite-element.github.io/.

[DC93]

E. Detournay and Alexander H.-D. Cheng. Fundamentals of poroelasticity. In Charles Fairhurst, editor, Analysis and Design Methods, pages 113–171. Pergamon, Oxford, 1993. doi:10.1016/B978-0-08-040615-2.50011-3.

[DCC13]

Boyang Ding, Alexander H-D Cheng, and Zhanglong Chen. Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition. Journal of Applied Mechanics, 2013.

[Far21]

Patrick E. Farrell. Finite Element Methods for PDEs. Oxford, 2021. URL: https://people.maths.ox.ac.uk/farrellp/femvideos/notes.pdf.

[HWJ12]

Hayes, G. P., D. J. Wald, and R. L. Johnson. Slab1.0: a three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 2012. doi:10.1029/2011JB008524.

[KK87]

S. H. Kirby and A. K. Kronenberg. Rheology of the lithosphere: selected topics. Reviews of Geophysics, 25:1219–1244, 1987.

[KB87]

M. Kojic and K.-J. Bathe. The `effective stress-function' algorithm for thermo-elasto-plasticity and creep. Int. J. Num. Meth. Eng, 24:1509–1532, 1987.

[LAH06]

P. Liu, R. J. Archuleta, and S. H. Hartzell. Prediction of broadband ground-motion time histories: Hybrid low/high- frequency method with correlated random source parameters. Bulletin of the Seismological Society of America, 96(6):2118–2130, December 2006. doi:10.1785/0120060036.

[Oka92]

Y. Okada. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018–1040, 1992.

[Pat94]

W. S. B. Paterson. The Physics of Glaciers. Elsevier Science Ltd., Oxford, third edition edition, 1994. 480 pp.

[Pre68]

J. H. Prentice. Dimensional problem of the power law in rheology. Nature, 217:157, 1968. doi:10.1038/217157a0.

[SS86]

Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986. doi:10.1137/0907058.

[SP78]

J. C. Savage and W. H. Prescott. Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83:3369–3376, 1978.

[Tay03]

R. L. Taylor. FEAP–A Finite Element Analysis Program. version 7.5 theory manual edition, 2003. 154 pp.

[ZT00]

O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Volume Volume 2: Solid Mechanics. Butterworth-Heinemann, Oxford, fifth edition edition, 2000.