# Elasticity with Infinitesimal Strain and No Faults We begin with the elasticity equation including the inertial term, ```{math} :label: eqn:elasticity:strong:form \rho \frac{\partial^2\vec{u}}{\partial t^2} - \vec{f}(\vec{x},t) - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} (\vec{u}) = \vec{0} \text{ in }\Omega, ``` ```{math} :label: eqn:bc:Neumann \boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on }\Gamma_\tau, ``` ```{math} :label: eqn:bc:Dirichlet \vec{u} = \vec{u}_0(\vec{x},t) \text{ on }\Gamma_u, ``` where $\vec{u}$ is the displacement vector, $\rho$ is the mass density, $\vec{f}$ is the body force vector, $\boldsymbol{\sigma}$ is the Cauchy stress tensor, $\vec{x}$ is the spatial coordinate, and $t$ is time. We specify tractions $\vec{\tau}$ on boundary $\Gamma_\tau$, and displacements $\vec{u}_0$ on boundary $\Gamma_u$. Because both $\vec{\tau}$ and $\vec{u}$ are vector quantities, there can be some spatial overlap of boundaries $\Gamma_\tau$ and $\Gamma_u$; however, a degree of freedom at any location cannot be associated with both prescribed displacements (Dirichlet) and traction (Neumann) boundary conditions simultaneously. ```{table} Mathematical notation for elasticity equation with infinitesimal strain. :name: tab:notation:elasticity | **Category** | **Symbol** | **Description** | |:-------------------------------|:---------------:|:-------------------------------------------------------| | Unknowns | $\vec{u}$ | Displacement field | | | $\vec{v}$ | Velocity field | | Derived quantities | $\boldsymbol{\sigma}$ | Cauchy stress tensor | | | $\boldsymbol{\epsilon}$ | Cauchy strain tensor | | Common constitutive parameters | $\rho$ | Density | | | $\mu$ | Shear modulus | | | $K$ | Bulk modulus | | Source terms | $\vec{f}$ | Body force per unit volume, for example $\rho \vec{g}$ | ``` :::{toctree} quasistatic.md dynamic.md bulk-rheologies/index.md :::