# Elasticity with Infinitesimal Strain and Prescribed Slip on Faults For each fault, which is an internal interface, we add a boundary condition to the elasticity equation prescribing the jump in the displacement field across the fault, % ```{math} :label: eqn:bc:prescribed:slip \begin{gathered} \vec{u}^+ - \vec{u}^- - \vec{d}(\vec{x},t) = \vec{0} \text{ on }\Gamma_f, \end{gathered} ``` % where $\vec{u}^+$ is the displacement vector on the "positive" side of the fault, $\vec{u}^-$ is the displacement vector on the "negative" side of the fault, $\vec{d}$ is the slip vector on the fault, and $\vec{n}$ is the fault normal which points from the negative side of the fault to the positive side of the fault. We enforce the jump in displacements across the fault using a Lagrange multiplier corresponding to equal and opposite tractions on the two sides of the fault. We apply conservation of momemtum, \begin{equation} \int_\Omega \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_\Omega \vec{f}(\vec{x},t) \, d\Omega + \int_\Gamma \vec{\tau}(\vec{x},t) \, d\Gamma, \end{equation} to a fault interface $\Omega_f$ with boundaries $\Gamma_{f^+}$ and $\Gamma_{f^-}$. For a fault interface, the body force is zero, $\vec{f}(\vec{x},t) = \vec{0}$. The tractions on the positive and negative fault faces are \begin{gather} \tau^+(\vec{x},t) = \boldsymbol{\sigma}^+ \cdot \vec{n} + \vec{\lambda} \\ \tau^-(\vec{x},t) = \boldsymbol{\sigma}^- \cdot \vec{n} - \vec{\lambda}, \end{gather} where $\vec{\lambda}$ is the Lagrange multiplier that corresponds to the fault traction generating the prescribed slip and $\boldsymbol{\sigma}^+$ and $\boldsymbol{\sigma}^-$ are the stresses in the domain at the positive and negative sides of the fault. Thus, for a fault interface, we have \begin{equation} \int_{\Omega_f} \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_{\Gamma_{f^+}} \boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \, d\Gamma + \int_{\Gamma_{f^-}} \boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \, d\Gamma. \end{equation} ```{table} Mathematical notation for elasticity equation with infinitesimal strain and prescribed slip on faults. :name: tab:notation:elasticity:prescribed:slip | Category | Symbol | Description | |:-------------|:----------:| :-------------------------| | Unknowns | $\vec{u}$ | Displacement field | | | $\vec{v}$ | Velocity field | | | $\vec{\lambda}$ | Lagrange multiplier field | | Derived quantities | $\boldsymbol{\sigma}$ | Cauchy stress tensor | | | $\boldsymbol{\epsilon}$ | Cauchy strain tensor | | Common constitutive parameters | $\rho$ | Density | | | $\mu$ | Shear modulus | | | $K$ | Bulk modulus | | Source terms | $\vec{f}$ | Body force per unit volume, for example $\rho \vec{g}$ | | | $\vec{d}$ | Slip vector field on the fault corresponding to a jump in the displacement field across the fault | ``` :::{toctree} quasistatic.md dynamic.md :::