# Poroelasticity with Infinitesimal Strain and No Faults We base this formulation for poroelasticity on Zheng et al. and Detournay and Cheng (1993). We assume a slightly compressible fluid that completely saturates a porous solid, undergoing infinitesimal strain. We begin with the conservation of linear momentum, including inertia, borrowed from linear elasticity: % \begin{equation} \rho_s\frac{\partial^2 \vec{u}}{\partial t^2} = \vec{f}(t) + \nabla \cdot \boldsymbol{\sigma}(\vec{u},p). \end{equation} % Enforcing mass balance of the fluid gives % \begin{gather} \frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = \gamma(\vec{x},t) \text{ in } \Omega, \\ % \vec{q} \cdot \vec{n} = q_0(\vec{x},t) \text{ on }\Gamma_q, \\ % p = p_0(\vec{x},t) \text{ on }\Gamma_p, \end{gather} % where $\zeta$ is the variation in fluid content, $\vec{q}$ is the rate of fluid volume crossing a unit area of the porous solid, $\gamma$ is the rate of injected fluid per unit volume of the porous solid, $q_0$ is the outward fluid velocity normal to the boundary $\Gamma_q$, and $p_0$ is the fluid pressure on boundary $\Gamma_p$. We require the fluid flow to follow Darcy's law (Navier-Stokes equation neglecting inertial effects), % \begin{equation} \vec{q}(p) = -\frac{\boldsymbol{k}}{\mu_{f}}(\nabla p - \vec{f}_f), \end{equation} % where $\boldsymbol{k}$ is the intrinsic permeability, $\mu_f$ is the viscosity of the fluid, $p$ is the fluid pressure, and $\vec{f}_f$ is the body force in the fluid. If gravity is included in a problem, then usually $\vec{f}_f = \rho_f \vec{g}$, where $\rho_f$ is the density of the fluid and $\vec{g}$ is the gravitational acceleration vector. ## Constitutive Behavior We assume linear elasticity for the solid phase, so the constitutive behavior can be expressed as % \begin{equation} \boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C} : \boldsymbol{\epsilon} - \alpha p \boldsymbol{I}, \end{equation} % where $\boldsymbol{\sigma}$ is the stress tensor, $\boldsymbol{C}$ is the tensor of elasticity constants, $\alpha$ is the Biot coefficient (effective stress coefficient), $\boldsymbol{\epsilon}$ is the strain tensor, and $\boldsymbol{I}$ is the identity tensor. For this case, we will assume that the material properties are isotropic, resulting in the following formulation for the stress tensor: % \begin{equation} \boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C}:\boldsymbol{\epsilon} - \alpha p \boldsymbol{I} = \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu \boldsymbol{\epsilon} - \alpha \boldsymbol{I} p \end{equation} % where $\lambda$ and $\mu$ are Lamé's parameters, $\lambda = K_{d} - \frac{2 \mu}{3}$, $\mu$ is the shear modulus, and the volumetric strain is defined as $\epsilon_{v} = \nabla \cdot \vec{u}$. For the constitutive behavior of the fluid, we use the volumetric strain to couple the fluid-solid behavior, % \begin{gather} \zeta(\vec{u},p) = \alpha \mathop{\mathrm{Tr}}({\boldsymbol{\epsilon}}) + \frac{p}{M}, \\ % \frac{1}{M} = \frac{\alpha-\phi}{K_s} + \frac{\phi}{K_f}, \end{gather} % where $1/M$ is the specific storage coefficient at constant strain, $K_s$ is the bulk modulus of the solid, and $K_f$ is the bulk modulus of the fluid. We can write the trace of the strain tensor as the dot product of the gradient and displacement field, so we have % \begin{equation} \zeta(\vec{u},p) = \alpha (\nabla \cdot \vec{u}) + \frac{p}{M}. \end{equation} % ```{table} Mathematical notation for poroelasticity with infinitesimal strain. :name: tab:notation:poroelasticity | **Category** | **Symbol** | **Description** | |:-------------------------------|:---------------:|:--------------------------------------------------------------------------------------------------------------| | Unknowns | $\vec{u}$ | Displacement field | | | $\vec{v}$ | Velocity field | | | $p$ | Pressure field (corresponds to pore fluid pressure) | | | $\epsilon_{v}$ | Volumetric (trace) strain | | Derived quantities | $\boldsymbol{\sigma}$ | Cauchy stress tensor | | | $\boldsymbol{\epsilon}$ | Cauchy strain tensor | | | $\zeta$ | Variation of fluid content (variation of fluid vol. per unit vol. of PM), $\alpha \epsilon_{v} + \frac{p}{M}$ | | | $\rho_{b}$ | Bulk density, $\left(1 - \phi\right) \rho_{s} + \phi \rho_{f}$ | | | $\vec{q}$ | Darcy flux, $-\frac{\boldsymbol{k}}{\mu_{f}} \cdot \left(\nabla p - \vec{f}_{f}\right)$ | | | $M$ | Biot modulus | | Common constitutive parameters | $\rho_{f}$ | Fluid density | | | $\rho_{s}$ | Solid (matrix) density | | | $\phi$ | Porosity | | | $\boldsymbol{k}$ | Permeability | | | $\mu_{f}$ | Fluid viscosity | | | $K_{s}$ | Solid grain bulk modulus | | | $K_{f}$ | Fluid bulk modulus | | | $K_{d}$ | Drained bulk modulus | | | $\alpha$ | Biot coefficient, $1 - \frac{K_{d}}{K_{s}}$ | | Source terms | $\vec{f}$ | Body force per unit volume, for example: $\rho_{b} \vec{g}$ | | | $\vec{f}_{f}$ | Fluid body force, for example: $\rho_{f} \vec{g}$ | | | $\gamma$ | Source density; rate of injected fluid per unit volume of the porous solid | ``` :::{toctree} quasistatic.md dynamic.md :::