(sec-user-governingeqns-elasticity-rheologies)= # Bulk Rheologies for Elasticity In this section we describe the mathematic formulations of the bulk rheologies for elasticity. The bulk rheologies include * Isotropic linear elasticity, * Isotropic linear (Maxwell) viscoelasticity, * Isotropic linear generalized Maxwell viscoelasticity, and * Isotropic power-law viscoelasticity. For the viscoelastic rheologies, we assume the viscous deformation is incompressible; consequently, we separate the stress and strain fields into deviatoric and volumetric components. ```{table} Mathematical notation for viscoelastic formulations. :name: tab:viscoelasticity:notation | Variable | Symbol | Definition | |:-------------------------------|:-----------------:|:-------------------------------------------------------| | Mean stress | $\mathit{P}$ | $\frac{\mathop{\mathrm{Tr}}(\boldsymbol{\sigma})}{3}$ | | Mean strain | $\mathit{\theta}$ | $\frac{\mathop{\mathrm{Tr}}(\boldsymbol{\epsilon})}{3}$ | | Deviatoric stress | $\boldsymbol{\sigma}^{\mathit{dev}}$ | $\boldsymbol{\sigma} - \mathit{P}\mathit{\boldsymbol{I}}$ | | Deviatoric strain | $\boldsymbol{\epsilon}^{\mathit{dev}}$ | $\boldsymbol{\epsilon} - \mathit{\theta}\mathit{\boldsymbol{I}}$ | | 2nd deviatoric stress invariant| $\mathit{J}_{2}^{\prime}$ | $\frac{1}{2}\boldsymbol{\sigma}^{dev}:\boldsymbol{\sigma}^{dev}$ | | 2nd deviatoric strain invariant| $\mathit{L}_{2}^{\prime}$ | $\frac{1}{2}\boldsymbol{\epsilon}^{dev}:\boldsymbol{\epsilon}^{dev}$ | ``` :::{toctree} elasticity-constitutive.md linear-elastic.md linear-maxwell.md linear-genmaxwell.md effective-stress.md powerlaw.md :::