

PyLith

Description

PyLith is a finite-element code with a primary focus on modeling interseismic and coseismic deformation of Earth’s crust and upper mantle.
PyLith supports 2D and 3D static, quasistatic (neglecting inertia), and dynamic (including inertia) formulations of the governing equations, which can be elasticity, incompressble elasticity, or poroelasticity.
A variety of elastic and viscoelastic bulk rheologies are supported.
Boundary conditions include Dirichlet, Neumann, and absorbing boundaries.
Faults are treated as interior interfaces.
Currently, only the slip must be prescribed (kinematic rupture).
We plan to reimplement spontaneous rupture (fault friction) in an upcoming release; see ref{sec-development-plan} for more information.

The code is written in C++ and Python and uses MPI for parallel processing.
We use the Pyre Python framework to setup the simulation.
We leverage PETSc [https://petsc.org] for finite-element data structures and operations as well as linear and nonlinear solvers.

Other sources of documentation

	This manual in other formats epub [https://pylith.readthedocs.io/_/downloads/en/latest/epub/] pdf [https://pylith.readthedocs.io/_/downloads/en/latest/pdf/]

	PyLith tutorials [https://geodynamics.org/courses/PyLith]

	SpatialData documentation [https://spatialdata.readthedocs.io]

	PyLith installer documentation [https://pylith-installer.readthedocs.io] (for installing from source)

PyLith development team

The primary developers are:

	Brad Aagaard (U.S. Geological Survey)

	Matthew Knepley (University at Buffalo)

	Charles Williams (GNS Science)

License

Copyright (c) 2010-2023 University of California, Davis

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Introduction

	Preface
	Citation

	Publishing Models

	Support

	Acknowledgments

	Request for Comments

	Conventions
	Command Line Arguments

	Filenames and Directories

	Unix Shell Commands

	Excerpts of cfg Files

	Quickstart

	Release Notes
	Version 4.1.0 (main)

	Version 4.0.0 (2023/12/14)

	Version 3.0.3 (2022/10/14)

	Version 3.0.2 (2022/08/24)

	Version 3.0.1 (2022/06/19)

	Version 3.0.0 (2022/06/08)

	Version 2.2.2 (2019/07/02)

	Version 2.2.1 (2017/09/06)

	Version 2.2.0 (2017/03/28)

	Version 2.1.4 (2016/10/21)

	Version 2.1.3 (2016/07/20)

	Version 2.1.2 (2016/06/16)

	Version 2.1.0 (2015/02/19)

	Version 2.0.3 (2014/08/19)

	Version 2.0.2

	Version 2.0.1 (2014/06/22)

	Version 2.0.0 (2014/06/05)

	Version 1.9.0 (2014/05/05)

	Version 1.8.0

	Version 1.7.1

	Version 1.7.0

	Version 1.6.3

	Version 1.6.2

	Version 1.6.1

	Version 1.6.0

	Version 1.5.2

	Version 1.5.1

	Version 1.5.0

	Version 1.3.1

	Version 1.3.0

	Version 1.2.0

	Version 1.1.2

	Version 1.1.1

	Version 1.1.0

	Version 1.0.2

	Version 1.0.1

	Version 1.0.0

	Development Plan
	Version 4.1.0 (April 2024)

	Version 5.0.0 (June 2024)

	Version 6.0.0 (TBD)

	Version 7.0.0 (TBD)

	Features for Future Releases

Preface

This documentation is aimed at two categories of users: (1) scientists who prefer to use prepackaged and specialized analysis tools, and (2) experienced computational Earth scientists.
If you want to modify the source code, you will likely need to be familiar with object-oriented programming, Python and C++, and finite-element analysis.

Citation

The Computational Infrastructure for Geodynamics (CIG) (geodynamics.org [https://geodynamics.org/]) is making this software and source code available to you at no cost in hopes that the software will enhance your research in geophysics.
A number of individuals have contributed a significant portion of their careers toward the development of this software.
It is essential that you recognize these individuals in the normal scientific practice by citing the appropriate software release and peer-reviewed papers as well as making appropriate acknowledgments in talks and publications.
The preferred way to generate the list of publications (in BibTeX format) to cite is to run your simulations with the --include-citations command line argument, or equivalently, the --petsc.citations command line argument.
The --version command line argument will generate the BibTeX entries for the references mentioned below.

The following peer-reviewed paper discusses the development of PyLith:

	Aagaard, B. T., M. G. Knepley, and C. A. Williams (2013). A domain decomposition approach to implementing fault slip in finite-element models of quasistatic and dynamic crustal deformation, Journal of Geophysical Research: Solid Earth, 118, doi: 10.1002/jgrb.50217.

To cite the software and manual, use:

	Aagaard, B., M. Knepley, C. Williams (2023a), PyLith v4.0.0. Davis, CA: Computational Infrastructure of Geodynamics. DOI: 10.5281/zenodo.10359667.

	Aagaard, B., M. Knepley, C. Williams (2023b), PyLith Manual, Version 4.0.0. Davis, CA: Computational Infrastructure of Geodynamics. https://pylith.readthedocs.io/en/v4.0.0

Publishing Models

Open research statements are now a common requirement when publishing research.
These support reuse, validation, and citation and often take the form of Data availability, Data access, Code availability, Open Research, and Software availability statements.
We recommend depositing input files that allow your published research to be reproduced and output model data in support of your research outcomes and figures.
In addition, consider depositing model files that may be reused by others.

Remember to cite software and data in your text as well as in your Data availability or similar statement.

Files should be deposited in an approved repository.

Additional information on Publishing [https://geodynamics.org/software/software-bp/software-publishing] and repositories are available on the CIG website.

Files

Common input files include .cfg, , .spatialdb, and mesh files .exo, .msh, or mesh.
Common output files include the solution fields and state variables as .h5, .xmf, vtk, and vtu..

Example Statement

The configuration files, parameters of the simulation, and solution field for the models in this study are available at DOI (Authors X, Y, Z) under CC BY-NC-SA 4.0.

PyLith version 4.0.0 (Aagaard et al., 2013; Aagaard et al., 2023a; Aagaard et al., 2023b) used in these models is freely available under the MIT license for download through its software landing page https://geodynamics.org/resources/pylith or Zenodo (10.5281/zenodo.10359667).
The project is being actively developed on GitHub and can be accessed via https://github.com/geodynamics/pylith.

Support

Current PyLith development is supported by the CIG, and internal GNS Science https://www.gns.cri.nz/ and U.S. Geological Survey https://www.usgs.gov/ funding.
Pyre development was funded by the Department of Energy’s https://www.energy.gov/energygov Advanced Simulation and Computing program and the National Science Foundation’s Information Technology Research (ITR) program.

This material is based upon work supported by the National Science Foundation under Grants No. 0313238, 0745391, and EAR-1550901.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Acknowledgments

Many members of the community contribute to PyLith through reporting bugs, suggesting new features and improvements, running benchmarks, and asking questions about the software.
See the contributors list for each release for specific contributions.

Request for Comments

Your suggestions and corrections can only improve this documentation.
Please report any errors, inaccuracies, or typos to the PyLith section of the CIG Community Forum https://community.geodynamics.org/c/pylith or create a GitHub pull request.

Conventions

Warning

This is a warning.

Important

This is something important.

Tip

This is a tip, helpful hint, or suggestion.

For features recently added to PyLith, we show the version number when they
were added.
New in v3.0.0

Command Line Arguments

Example of a command line argument: --help.

Filenames and Directories

Example of filenames and directories: pylith, /usr/local.

Unix Shell Commands

Commands entered into a Unix shell (i.e., terminal) are shown in a box.
Comments are delimited by the # character. We use $ to indicate the bash shell prompt.

#This is a comment.
$ ls -l

Excerpts of cfg Files

Example of an excerpt from a .cfg file:

This is a comment.
[pylithapp.problem]
timestep = 2.0*s
bc = [x_pos, x_neg]

Quickstart

	Download the binary package appropriate for your system.

See Installation for instructions.

	Examine and run relevant examples.

See Examples.

Release Notes

See https://github.com/geodynamics/pylith/commits/main for the complete log of changes made to PyLith.

Note

Starting with v3.0.0, we strictly follow the semantic versioning guidelines [https://semver.org/].
The version numbers are in the form MAJOR.MINOR.PATCH, where major releases indicate changes to the public API (parameters), minor releases indicate new functionality that is backward compatible, and patch releases indicate backward compatible bug fixes.

Version 4.1.0 (main)

	Changed

	Improve the default preconditioners for poroelasticity.

	Fixed

	Remove extra (wrong) kernels for poroelasticity when using state variables.

Version 4.0.0 (2023/12/14)

	User parameters

	Changed name of fault Lagrange multiplier field for solution component in Python from lagrange_fault to lagrange_multiplier_fault to match name of solution field in C++.

	Removed support for importing meshes from LaGriT.

	Added

	Change in fault tractions are now included in the fault data_fields for prescribed slip.

	Fault and boundary orientation directions are now included in the info_fields for simulation output.

	State variables are now included in the default data_fields for simulation output.

	The default solver settings use the PETSc proper orthogonal decomposition (POD) methodology for initial guess of solutions to improve convergence.

	Add demonstration of pylith_powerlaw_gendb in Step 8 of examples/reverse-2d.

	Add demonstration of using poroelasticity with porosity as a state variable to examples/magma-2d.

	Improve integration with VSCode for testing and debugging (see Developer Guide)

	Changed

	Switched from CppUnit to Catch2 for the C++ testing framework.

	Update PETSc to version 3.20.2

	Update Python requirement to version 3.8 or later.

	Update Pyre requirement to version 1.1.0 or later.

	Update SpatialData requirement to version 3.1.0 or later.

	Fixed

	Fix errors in KinSrcTimeHistory.py

	Fix creation of PETSc label for edges when importing Gmsh files. This fixes creation of faults with buried edges for 3D meshes imported from Gmsh.

	Add containers for solution fields for poroelasticity with faults.

Contributors

	Brad Aagaard [image: ORCID iD]0000-0002-8795-9833 [https://orcid.org/0000-0002-8795-9833]

	Matthew Knepley [image: ORCID iD]0000-0002-2292-0735 [https://orcid.org/0000-0002-2292-0735]

	Charles Williams [image: ORCID iD]0000-0001-7435-9196 [https://orcid.org/0000-0001-7435-9196]

	Grant Block [image: ORCID iD]0009-0003-3402-0923 [https://orcid.org/0009-0003-3402-0923]

	Daniel Douglas [image: ORCID iD]0000-0002-7871-018X [https://orcid.org/0000-0002-7871-018X]

	Lorraine Hwang [image: ORCID iD]0000-0002-1021-3101 [https://orcid.org/0000-0002-1021-3101]

	Rezgar Shakeri [image: ORCID iD]0000-0003-4790-7016 [https://orcid.org/0000-0003-4790-7016]

	Robert Walker [image: ORCID iD]0000-0001-7856-1949 [https://orcid.org/0000-0001-7856-1949]

Version 3.0.3 (2022/10/14)

This is a bug fix release with no new features or changes to the user interface.

	Fixed

	Fixed duplicate integration of fault terms if a fault had one material on one side and multiple materials on the other side.

	Fixed bugs related to running in parallel.

	Creating constraints on buried fault edges failed for some mesh distribution cases.

	Green’s function problems did not manage fault impulses on multiple processes.

	Creating a point mesh for OutputSolnPoints failed when running in parallel.

	PetscSF inconsistencies generated errors at various times when running in parallel.

	Changed

	Update to PETSc 3.18.0.

Note: We now use PETSc routines to write the HDF5 files.
As a result, there is one change to the layout: topology/cells is now viz/topology/cells.
The corresponding Xdmf files reflect this change.

Binary packages

	Update to Python 3.10.6.

	Use gmforker process manager with MPICH to avoid localhost name issues.

Contributors

	Brad Aagaard [image: ORCID iD]0000-0002-8795-9833 [https://orcid.org/0000-0002-8795-9833]

	Matthew Knepley [image: ORCID iD]0000-0002-2292-0735 [https://orcid.org/0000-0002-2292-0735]

	Charles Williams [image: ORCID iD]0000-0001-7435-9196 [https://orcid.org/0000-0001-7435-9196]

Version 3.0.2 (2022/08/24)

This is a bug fix release with no new features or changes to the user interface.

	Added

	Add check of PyLith version against version requirements specified in metadata of parameter files.

	Documentation

	Add discussion of translating boundary value problem information to parameter settings. Add more code blocks to manual.

	Add discussion of examples/troubleshooting-2d to manual.

	Changed

	Update defaults to better match most use cases.

	Use nonlinear solver.

	Basis order is 1 for solution fields.

	Basis order is 0 for Cauchy stress and strain.

	Use ML algebraic multigrid preconditioner (from Trilinos) instead of GAMG preconditioner for more robust solves. This is a temporary change until we find better GAMG settings.

	Update PETSc to v3.17.3.

	Fixed

	Add viz directory missing from examples/subduction-2d in source distribution.

	Project output fields using correct PETSc routine (DMProjectFieldLabel()). Fixes memory access bugs in both serial and parallel.

	Fix build warnings.

	Fix reordering that causes errors when importing Gmsh files.

	Removed

	Remove obsolete LaTeX documentation.

Binary packages

	Added PyQT5 Python module for interactive plotting with matplotlib.

	Update PyLith Parameter Viewer to v2.0.1 (fix errors in packaging).

Known issues

	The default PETSc options provide a computationally expensive preconditioner when solving incompressible elasticity problems in parallel. We expect to have a more optimal preconditioner in the next release.

	You may still encounter a few bugs when running in parallel; they appear to cases with specific partitioning of the mesh in relation to one or more faults.

Contributors

	Brad Aagaard [image: ORCID iD]0000-0002-8795-9833 [https://orcid.org/0000-0002-8795-9833]

	Matthew Knepley [image: ORCID iD]0000-0002-2292-0735 [https://orcid.org/0000-0002-2292-0735]

	Charles Williams [image: ORCID iD]0000-0001-7435-9196 [https://orcid.org/0000-0001-7435-9196]

Version 3.0.1 (2022/06/19)

This is a bug fix release with no new features or changes to the user interface.

	Fixed

	Fix lots of small bugs related to running in parallel

	Fix several discrepancies among the code, examples, and manual

	Added

	Examples

	Added examples/subduction-3d steps 1-4 (included in the manual)

	Added examples/troubleshooting-2d (included in the PyLith v3.0 tutorials but not yet added to the manual)

	Documentation

	Added instructions for how to remove Apple quarantine attributes

	Fix LaTeX build of documentation (now available at https://pylith.readthedocs.io)

	Improved instructions on how to run ParaView Python scripts when starting ParaView from a shortcut

	Added notes indicating steps of examples are not yet updated for v3.0

	Fix lots of typos

Binary packages

	Updated PyLith Parameter Viewer (v2.0.0) for Python 3.

Known issues

	The default PETSc options provide a computationally expensive preconditioner when solving incompressible elasticity problems in parallel. We expect to have a more optimal preconditioner in the next release.

	You may still encounter a few bugs when running in parallel; they appear to cases with specific partitioning of the mesh in relation to one or more faults.

Contributors

	Brad Aagaard [image: ORCID iD]0000-0002-8795-9833 [https://orcid.org/0000-0002-8795-9833]

	Matthew Knepley [image: ORCID iD]0000-0002-2292-0735 [https://orcid.org/0000-0002-2292-0735]

	Charles Williams [image: ORCID iD]0000-0001-7435-9196 [https://orcid.org/0000-0001-7435-9196]

Version 3.0.0 (2022/06/08)

Version 3.0.0 includes major changes to the underlying finite-element formulation and implementation in order to support a more flexible specification of the governing equations and higher order basis functions.
These changes affect how simulations are defined.
Parameter files for previous versions will need to be updated; the changes are too complex for a simple translation table.
Some features present in v2.2.2, such as spontaneous rupture and finite strain, have not yet been implemented in the new formulation.

	Added

	Multiphysics

	Elasticity for linear isotropic materials and linear Maxwell, generalized Maxwell, and power law viscoelastic models

	Incompressible elasticity for linear isotropic materials

	Prescribed slip for quasistatic and dynamic simulations

	Higher order basis functions
Allow user to select order of basis functions independent of the mesh (which defines the geometry). This permits higher resolution for a given mesh.

	Added ability to import finite-element meshes from Gmsh

	Switch to using PETSc time-stepping (TS) algorithms
Replace simple Python-based time-stepping implementations with PETSc time-stepping algorithms that provide support for higher order discretization in time and real adaptive time stepping.

	Modular approach for initial conditions

	Output of subfields with user-defined basis order

	Simulation metadata with command line utility for searching metadata

	Convert to Python 3

	Convert LaTeX documentation to Sphinx + MyST

	Testing with the Method of Manufactured Solutions

	Automatically assign label value for fault cohesive cells (id setting is obsolete).

	Changed

	Use description for descriptive labels and label and label_value for tagging entities. PyLith’s use oflabel and label_value now corresponds to PETSc labels and label values.

	Deprecated

	We plan to discontinue support for reading LaGriT mesh files in version 3.2.

Gmsh provides an open-source alternative with a graphical user interface.

SpatialData settings

db = spatialdata.spatialdb.UniformDB

Old
db.label = Slip spatial database

New
db.description = Slip spatial database

Material settings

material = pylith.materials.Elasticity

Old
material.label = Elastic material
material.id = 2

New
material.description = Elastic material
material.label_value = 2

Known issues

	Running in parallel has a few minor bugs due to communication mismatches and over-aggressive error checking. We will be fixing these in the next week.

	We will be updating the 3D subduction zone example (examples/subduction-3d) to v3.0.0 in the next week, including providing the input mesh file; in the meantime do not attempt to run this example.

	We have included Gmsh in the binary packages.
For Linux there are additional libraries that must be installed for Gmsh to run; these are associated with the graphical user interface and included in most default installations.

Contributors

	Brad Aagaard [image: ORCID iD]0000-0002-8795-9833 [https://orcid.org/0000-0002-8795-9833]

	Matthew Knepley [image: ORCID iD]0000-0002-2292-0735 [https://orcid.org/0000-0002-2292-0735]

	Charles Williams [image: ORCID iD]0000-0001-7435-9196 [https://orcid.org/0000-0001-7435-9196]

	Kali Allison [image: ORCID iD]0000-0002-0561-8681 [https://orcid.org/0000-0002-0561-8681]

	Alex Berne [image: ORCID iD]0000-0001-7857-8513 [https://orcid.org/0000-0001-7857-8513]

	Jed Brown [image: ORCID iD]0000-0002-9945-0639 [https://orcid.org/0000-0002-9945-0639]

	Lorraine Hwang [image: ORCID iD]0000-0002-1021-3101 [https://orcid.org/0000-0002-1021-3101]

	Rey Koki [image: ORCID iD]0009-0007-6551-743X [https://orcid.org/0009-0007-6551-743X]

	Shengduo Liu

	Chris Mills

	Thea Ragon [image: ORCID iD]0000-0002-1276-1910 [https://orcid.org/0000-0002-1276-1910]

	Robert Walker [image: ORCID iD]0000-0001-7856-1949 [https://orcid.org/0000-0001-7856-1949]

Version 2.2.2 (2019/07/02)

	Bug fixes

	Fix several typos in the manual.

	Fix order of deallocation of data members in ElasticMaterial to prevent a segmentation fault, thereby allowing error messages to be shown when throwing an exception.

	Fix tests for MPI and PETSc version info for more use cases.

	Ensure all Python script are executable and use nemesis is used instead of python for correct paths to modules on Darwin.

	Added ability to write residual to an HDF5 file during solves. This is intended for debugging and is enabled at runtime using --journal.debug.formulation=1. The residual will be written to residual.h5. To generate the associated .xdmf file run pylith_genxdmd -f residual.h5.

	Updated to PETSc 3.10.2

Version 2.2.1 (2017/09/06)

	Added new examples.

	examples/3d/subduction: New suite of examples for a 3-D subduction zone. This intermediate level suite of examples illustrates a wide range of PyLith features for quasi-static simulations.

	examples/2d/subduction: Added quasi-static spontaneous rupture earthquake cycle examples (Steps 5 and 6) for slip-weakening and rate- and state-friction.

	These new examples make use of ParaView Python scripts to facilitate using ParaView with PyLith.

	Improved the PyLith manual

	Added diagram to guide users on which installation method best meets their needs.

	Added instructions for how to use the Windows Subsystem for Linux to install the PyLith Linux binary on systems running Windows 10.

	Fixed bug in generating Xdmf files for 2-D vector output. Converted Xdmf generator from C++ to Python for more robust generation of Xdmf files from Python scripts.

	Updated spatialdata to v1.9.10. Improved error messages when reading SimpleDB and SimpleGridDB files.

	Updated PyLith parameter viewer to v1.1.0. Application and documentation are now available on line at https://geodynamics.github.io/pylith_parameters. Small fix to insure hierarchy path listed matches the one for PyLith.

	Updated PETSc to v3.7.6. See the PETSc documentation for a summary of all of the changes.

	Switched to using CentOS 6.9 for Linux binary builds to insure compatibility with glibc 2.12 and later.

Version 2.2.0 (2017/03/28)

	Added a browser-based parameter viewer for interactive viewing of all PyLith parameters and version information. See Section 4.10 PyLith Parameter Viewer of the PyLith user manual.

	Adjusted packaging of the binary distributions so that they can be used to extend PyLith and/or integrate other code with PyLith.

	Converted the user manual from Lyx to LaTeX and added syntax highlighting of parameter and spatial database files. Fixed several typos.

	Fixed bug that sometimes resulted in an inconsistent fault orientation when running in parallel. The bug appears to have been introduced in v2.0.

	Fixed two bugs in output of solution at points that sometimes
happened in parallel simulations. The errors include:

	The order of the station names does not match the order of the points. The point data is written in parallel by process order, so the points for process 0 are written first, then those for process 1, etc. This often results in reordering of the points. The station names were written in the original order.

	The output values for some points are incorrect. The wrong cells were being used in the interpolation.

	Updated PETSc to v3.7.5.

Version 2.1.4 (2016/10/21)

	Added –version command line argument to display version information for PyLith and its dependencies.

	Improved information displayed with the –help command line argument.

	Added --include-citations command line argument to display publications to cite when publishing results from computations using PyLith. General PyLith references are also displayed with the --version command line argument.

	Allow use of NetCDF versions greater than 4.1.3. Switch from using C++ API to C API.

	Fixed bug in Pythia associated with validation of parameters being done before help could be displayed.

	Fixed typos in manual for gravity and point forces.

	Added integration with Travis for automated testing.

Version 2.1.3 (2016/07/20)

	Add generate_statedb.py and postseismic.pvsm files missing from examples/2d/gravity.

	Update handling of fault intersection when creating boundary
condition nodesets in examples/meshing/surface_nurbs/subduction.

	Fixes to Darwin binary package.

	Fix linking of netCDF4 Python module.

	Fix linking and executable mode permissions for Python scripts in binary by using nemesis so relative links are valid.

Version 2.1.2 (2016/06/16)

	Bugfixes for finite-strain formulation.

	Added output of the Cauchy stresses (cauchy_stress). The second Piola-Kirchoff stresses are output via the stress field.

	Material properties and state variables were not retrieved properly when updating state variables.

	Bugfixes for setting initial stress and state variables for viscoelastic materials. The deviatoric stress state is carried forward using the state variables, so the initial deviatoric stress should not be considered when computing the stresses.

	Created new examples showing how to use gravity, initial stress, and finite-strain in 2-D (examples/2d/gravity).

	Reintroduced check (that had been inadvertently removed in v2.x) for ambiguous description of fault surface based on groups of vertices defining faces of cells.

	Flush the output of the progress monitor so progress reports are updated promptly.

	Updates to the user manual.

	Added section on the debugging examples covered in recent tutorials.

	Added tables describing the spatial database values for each material.

	Included a more complete discussion of the finite-strain formulation.

	PETSc

	Updated to PETSc v3.7.2 (knepley/pylith branch).

	Fixed Trilinos/ML configuration and code so that it can be built without a Fortran compiler.

Version 2.1.0 (2015/02/19)

	Station names are required for output at arbitrary points (OutputSolnPoints) and are included in a /stations dataset in HDF5 files.

	A progress monitor will update a text file with the progress of a simulation (time in the time stepping loop or the number of impulses completed) and given an estimate of when the simulation will be completed.

Bug fixes

	A few bugs related to creating cohesive cells for fault intersections have been fixed. Faults can now meet at T intersections provided the buried edges of the faults are clamped. In other words, the fault ending at the T intersection has a clamped edge along the intersection. The fault ending at the intersection must also come AFTER the through-going fault in the list of fault interfaces.

	There have been two major bug fixes for Drucker-Prager plasticity, for both DruckerPrager3D and DruckerPragerPlaneStrain. The first fix was a missing initial pressure term for the plastic multiplier in the Drucker-Prager formulation. This affects plasticity calculations when initial stresses are used. The error has been corrected in the code, the manual, and the unit tests. The second bug was an incorrect test for tensile yield that could cause PyLith to exit with an error when plastic yield had not actually occurred. The error would only occur when the allow_tensile_yield flag was set to False. This bug has been fixed in the code, and the new test is also described in the manual. This should prevent problems that previously existed when allow_tensile_yield was set to False (as it should be for most quasi-static problems).

	Fixed bug in DataWriterHDF5Ext associated with multiple processes writing information to the HDF5 file. With external datasets the HDF5 file is limited to metadata and is maintained by process 0.

	A two-dimensional gravity example has been added, based on the tutorial from the June, 2014 workshop at Stanford University. The tutorial itself is in examples/2d/gravity, and a new section has also been added to the manual describing the example.

	Fixed inconsistent fault orientation when running in parallel for 2-D domains.

Migrating from v2.0.x to v2.1.x

The points file for OutputSolnPoints must now contain station names as the first column.

Version 2.0.3 (2014/08/19)

Bug fixes

	Updated autotools files (Makefile.am, configure.ac) for compatibility with recent versions of automake (up to and including v1.14.1).

Version 2.0.2

Bug fixes

	Fixed linking issue in Darwin binary distribution, primarily affecting systems with OS X 10.7 and 10.8.

	Improved example journal files for CUBIT/Trelis to improve compatibility (examples/meshing/surface_nurbs/dem).

	Updated more journal in examples so that APREPRO lines have a leading ‘$’ instead of a ‘#’ to differentiate from comments.

	Added examples/debugging files from Crustal Deformation Modeling workshop debugging tutorial.

Version 2.0.1 (2014/06/22)

Bug fixes

	Improved example journal files for CUBIT/Trelis to improve compatibility. All journal files should work with CUBIT 14.1 and Trelis 15.0.

	Created examples of IDless journal files in examples/2d/greensfns. These files should work with all recent versions of CUBIT and Trelis.

	Switched journal APREPRO lines to have leading ‘$’ instead of ‘#’ to differentiate from comments.

Version 2.0.0 (2014/06/05)

	Replaced C++ Sieve implementation of finite-element data structures with C DMPlex implementation.

DMPlex provides a simpler, more efficient implementation of the finite-element data structures that conforms to the PETSc data management (DM) interface. This provides tighter integration with the rest of PETSc. Additionally, this rewrite of the data structures results in a more efficient memory layout, resulting in better performance.

	Improved treatment of buried fault edges, so that the slip naturally tapers to zero along the buried edges.

An additional nodeset/pset is used to designate the buried edges of a fault. This allows the cohesive cells to be inserted up to the edge of the fault without splitting the mesh at the fault edge. The slip will naturally taper to zero at along the buried edges as a result of how the cohesive cells are created.

	Switched from using Subversion to Git for version control.

The source code repository changed from a CIG maintained Subversion repository to a Git repository at GitHub.com. The URL for the Git repository is https://github.com/geodynamics/pylith. The installer has been updated accordingly.

	Added ability to recursively refine a mesh.

Global uniform refinement can now be done recursively. Each refinement reduces the vertex spacing by a factor of two. Using more than one level of refinement should be done carefully as the mesh quality will generally deteriorate with more levels of refinement.

	Directories for output are created as necessary.

Directories where output files are written will be created if necessary. Previously, the directories would not be created, so that opening the output files in a nonexistent directory would generate an error.

	Improved error messages.

Error messages originating in PETSc will include a stack trace that includes both PyLith and PETSc code. Previously, only the PETSc code was included. This provides significantly more information for debugging.

	Improved CUBIT example for mesh sizing functions.

Based on experimentation with CUBIT 14.0, 14.1, and Trelis 15.0, we have improved the CUBIT mesh sizing examples (examples/meshing/cubit_cellsize). We were able to simplify the journal files and use fewer CUBIT commands. The new procedure also eliminates some CUBIT warnings.

	Several small improvements to various sections of the manual based
on feedback and questions from users.

	Added more information about the workflow involved in using PyLith.

	Added a discussion of how to set scales for nondimensionalization.

	Added a discussion of how the stable time step is computed for the various materials.

	Updated and expanded the discussion of using initial state variables.

Bug fixes

	Fixed two MPI related bugs in computing Green’s functions in parallel. The number of impulses corresponded to only those on process 0.

	Corrected computation of fault tractions (Lagrange multipliers) on process boundaries for prescribed slip with explicit time stepping.

	Fixed bug when reading in list of output points with just one point.

	Adjusted autoconf Python setup macro to remove temporary sysconfig.pyc file.

	Added check to make sure degree of freedom specified in Dirichlet BC is consistent with spatial dimension of problem.

	Corrected two typos in the manual related to fault opening and tractions in examples/3d/hex8/step20 and updating to the use of cell.dimension for the quadrature scheme with tets.

	Fixed stable time step computed for power-law viscoelastic rheology to match manual.

Migrating from v1.9.x to 2.0.x

Changes to various C++ objects permitted simplifying the specification
of a number of components. The map below indicates the name changes.

CellFilterAvgMesh -> CellFilterAvg
CellFilterAvgSubMesh -> CellFilterAvg
DataWriterVTKMesh -> DataWriterVTK
DataWriterVTKSubMesh -> DataWriterVTK
DataWriterVTKSubSubMesh -> DataWriterVTK
DataWriterHDF5Mesh -> DataWriterHDF5
DataWriterHDF5SubMesh -> DataWriterHDF5
DataWriterHDF5SubSubMesh -> DataWriterHDF5
DataWriterHDF5ExtMesh -> DataWriterHDF5Ext
DataWriterHDF5ExtSubMesh -> DataWriterHDF5Ext
DataWriterHDF5ExtSubSubMesh -> DataWriterHDF5Ext

Running the script:

bash $PYLITH_DIR/doc/developer/update_1.9to2.0.sh

will update all .cfg files in the current directory and all subdirectories with the new names (you will need to replace $PYLITH_DIR with the directory containing the PyLith source code).

PyLith allows use of the Chaco and ParMetis/Metis partitioners. The name of the ParMetis/Metis partitioner was changed from “parmetis” to “metis”.

[pylithapp.mesh_generator]
distributor.partitioner = metis

Buried edges of faults are handled differently in v2.0. A separate nodeset/pset should be created and contain the vertices on the buried edges of the fault. See the Section 6.4.2 of the PyLith manual for more information.

Version 1.9.0 (2014/05/05)

New features

	Added Newton-Raphson algorithm for spontaneous rupture simulations with explicit-stepping.

	Enforcing the friction criterion in a spontaneous rupture simulation with explicit time-stepping now uses a Newton-Raphson algorithm to find the correct traction increment. This provides a more stable numerical solution and eliminates oscillatory behavior when using rate-state friction.

	Added SCEC spontaneous rupture benchmark TPV102 to the benchmark repository. PyLith produces results very similar to several other finite-element codes.

Bug fixes

	Fixed two MPI related bugs in computing Green’s functions in
parallel. The number of impulses corresponded to only those on
process 0 and the output of the impulses for vertices on processor
boundaries was inconsistent.

	Corrected computation of fault tractions (Lagrange multipliers) on
process boundaries for prescribed slip with explicit time stepping.

	Fixed bug when reading in list of output points with just one
point.

	Adjusted autoconf Python setup macro to remove temporary sysconfig.pyc file.

	Added check to make sure degree of freedom specified in Dirichlet BC is consistent with spatial dimension of problem.

	Corrected two typos in the manual related to fault opening and tractions in examples/3d/hex8/step20 and updating to the use of cell.dimension for the quadrature scheme with tetrahedral cells.

Migrating from v1.8.x to v1.9.x

No changes are needed in .cfg files to switch from v1.8.0 to v1.9.0. Version 1.9.0 does includes some changes to the friction and material model interfaces, so extensions do require changes. See the templates for details.

Version 1.8.0

New features

	Additional flexibility in PETSc nonlinear solver parameters

The default line search type for the PETSc nonlinear (SNES) solver is a customized backtrace method included in PyLith. The user may now select alternative line search types (basic, bt, l2, cp) available in PETSc.

	Post-processing utility pylith_eqinfo to compute slip information.

This post-processing utility computes the moment magnitude, seismic moment, seismic potency, and average slip at user-specified snapshots in time from PyLith HDF5 output. Information is given for each fault and across all faults. See the Post-processing section in the Running PyLith chapter of the manual for more information.

	Computation of the stable time step for explicit time-stepping.

The stable time step for explicit time-stepping is computed based on the CFL condition and minimum edge lengths. For triangular and tetrahedral cells we also account for a reduction in the stable time step due to distorted cells (e.g., slivers and needles). See the Stable time step section in the Materials chapter of the manual for more information.

	Output the stable time step for each cell in a material.

Output cell_info_fields “stable_dt_implicit” and “stable_dt_explicit” can be included in material output.

	Added netCDF Python module to binary distribution to provide Python interface to NetCDF files, including Exodus-II files. This is used in a new meshing example for setting the discretization size using an Exodus-II vertex field. Note that this required updating the NetCDF library.

Bug fixes

	Fixed omission of synchronization of stable time step computation among processors. Minimum time step among all processors rather than local value should be used.

	Fixed density scale not being set in NondimElasticQuasistatic. Density scale should be set based on shear modulus, length scale, and relaxation time.

	Added warning when initial state for a fault constitutive model is not set. If an initial state value is not given, for rate-state friction using a default value of L / reference slip rate. Other fault constitutive models use a default value of 0.0 for initial state variables.

	Separated tensor components in Xdmf files to avoid confusion. The corresponding HDF5 files remain unchanged.

	Removed explicit time-stepping formulation with non-lumped Jacobian. This formulation was not setup properly for spontaneous rupture models and is too computationally expensive for practical problems. The ExplicitLumped formulations are now simply Explicit.

	Fixed parallel bug that resulting in inconsistent orientation of fault slip directions. Flipping the fault orientation was not synchronized across processors. This bug would only appear when running in parallel with faults that change from dipping in one direction to dipping in the opposite direction.

	Fixed bug in setting name of field in OutputSolnPoints when output multiple fields. This bug caused the name of the first output field to be used and output data to overwrite each other.

Migrating from v1.7.x to v1.8.x

Explicit time stepping with a non-lumped Jacobian has been eliminated
and ExplicitLumped is now Explicit.

Old setting
--
formulation = pylith.problems.ExplicitLumped
formulation = pylith.problems.ExplicitLumpedTri3
formulation = pylith.problems.ExplicitLumpedTet4

New setting
--
formulation = pylith.problems.Explicit
formulation = pylith.problems.ExplicitTri3
formulation = pylith.problems.ExplicitTet4

Version 1.7.1

Bug fixes

	Fixed a couple of bugs in the spontaneous earthquake rupture for quasi-static problems when running in parallel. These prevented the nonlinear solve from converging and erroneously generated fault-opening in a some cases.

	Minor updates to the documentation and manual. Added Green’s function examples to the manual.

Version 1.7.0

New features

	User-friendly interface for Green’s functions

A new problem type provides a user-friendly interface for computing Green’s functions associated with fault slip for complex spatial variation in elastic properties. See examples/2d/greensfns in the tutorials for examples.

	Output of solution field at user-specified locations

Added a new output manager for interpolation of the solution field to user-specified point locations. This feature is useful for comparison of the solution with observations and in computing Green’s functions. See examples/3d/hex8/step19 and examples/2d/greensfns in the tutorials for examples.

	Plane strain version of Drucker-Prager elastoplastic model

Added a plane strain version of the Drucker-Prager elastoplastic model. Additionally, the user can now select whether to use an inscribed, intermediate, or circumscribed fit to the Mohr Coulomb criterion.

	Spatial and temporal variation in tractions for spontaneous earthquake rupture

Switched from a simple constant spatial variation in initial fault tractions to the more flexible spatial and temporal variation consistent with the Dirichlet, Neumann, and point force boundary conditions. Also added a switch to turn on/off applying prescribed fault tractions when the fault opens; the default behavior is to stop applying prescribed fault tractions when the fault opens, but turning this off allows simulation of dike intrusions via prescribed fault tractions. See examples/3d/hex8/step20 in the tutorials for an example of how to specify fault tractions with the new implementation.

	Ability to use PETSc GPU solvers

Added ability to build PyLith with either double (default) or single precision floating point values to facilitate use of GPUs. In order to use PETSc GPU solvers, CUDA and cusp must be installed and PETSc must be configured to use CUDA. See the PyLith manual and PETSc documentation for details.

	User-specified start time for simulations.

Users can set the simulation start time to any desired value. This facilitates combining simulations to model the earthquake cycle.

	Elastic prestep in quasi-static simulations is optional.

The elastic prestep in quasi-static simulations can be skipped (the default is to include the elastic prestep). This facilitates combining simulations to model the earthquake cycle.

Bug fixes

	Fixed bug in the spontaneous earthquake rupture for quasi-static problems when running in parallel.

Migrating from v1.6.x to v1.7.x

Two changes are required when migrating from version 1.6 to 1.7.

	The FIATSimplex object now has the same parameters as the FIATLagrange object.

Old setting New setting
------------------------ ------------------
cell.shape = line cell.dimension = 1
cell.shape = triangle cell.dimension = 2
cell.shape = tetrahedron cell.dimension = 3

	Prescribed fault tractions for spontaneous earthquake rupture use a new, more flexible implementation that follows the same functional form for spatial and temporal variation as that used in the Dirichlet and Neumann boundary conditions. Consequently, the output info fields are also different and follow the naming scheme used in the other time-dependent boundary conditions.

Old settings
--
[pylithapp.timedependent.interfaces.fault]
db_initial_tractions = spatialdata.spatialdb.SimpleDB
db_initial_tractions.iohandler.filename = tractions.spatialdb
db_initial_tractions.label = Initial fault tractions

New settings
--
traction_perturbation = pylith.faults.TractPerturbation
[pylithapp.timedependent.interfaces.fault.traction_perturbation]
db_initial = spatialdata.spatialdb.SimpleDB
db_initial.iohandler.filename = tractions.spatialdb
db_initial.label = Initial fault tractions

Version 1.6.3

Bug fixes

	Improved error messages for problems encountered during processing of parameters. A backtrace of the object hierarchy is now included to pinpoint in which object the error occurred.

	Added a line search to the inner friction solve in quasi-static simulations to increase the robustness of the nonlinear solve. Simulations using rate and state friction now converge under a much wider range of circumstances.

	Fixed bug in updating slip state variable in slip-weakening friction. This caused slight errors in the cumulative slip. We also added a parameter that forces healing to occur in a single time step. This is used to confine slip to a single time step in quasi-static simulations. See examples/3d/hex8/step13.cfg for an example.

	Tuned parameters in the slip-weakening friction and rate and state friction examples (step13.cfg and step14.cfg, respectively) in examples/3d/hex8 to give stick-slip behavior.

	Fixed communication issue associated with writing boundary condition information output in parallel.

	Changed info in Xdmf file for fields that are not scalars, vectors, or tensors so that the each component is extracted, facilitating visualization in ParaView. The corresponding HDF5 file remains the same.

	Added the ability to specify non-derived units (e.g., degree and radian). This is useful in specifying parameters for the Drucker-Prager elastoplastic rheologies. If no units are specified, radians are assumed.

Internal changes

	Rate and state friction with ageing law

The implementation of rate and state friction with ageing law was modified to work better with the iterative solver. We switched to the conventional, unregularized formulation but added a minimum cutoff for the slip rate. Below this cutoff friction has a linear rather than logarithmic dependence on slip rate. As long as this cutoff is close to the SNES solver tolerance, the difference in behavior is negligible while improving the ability of the solver to converge for very small deformations.

Known Issues

	The rate and state friction with ageing law has not been tested for dynamic rupture simulations. We plan to run the SCEC Dynamic Rupture benchmarks for rate and state friction as soon as we add a spatial-temporal specification of initial fault tractions, which are required for the benchmark problems.

	Running simulations with more than a million cells and large faults in parallel can result in severe memory imbalances among processors. Some processors around the fault may use 10x more memory than processors away from the fault. We expect this problem to disappear in v1.7 when we switch to new, more efficient Sieve implementation.

Version 1.6.2

Bug fixes

	Fixed bug in writing tensor data for Xdmf files. Switched Tensor to Tensor6 to account for symmetry.

	Fixed bug in writing HDF5 files in parallel when one processor does not write any information (e.g., faults and boundary conditions).

	Added dimensioning of time dataset in HDF5 files. The units are now seconds rather than nondimensional time.

	Fixed memory allocation error (std::bad_alloc) when a processor did not contain cells for a boundary condition or output. This bug did not show up on all architectures.

	Increased robustness of spontaneous rupture (fault friction) implementation to broaden the range of conditions it can handle. The implementation now properly handles cases with fault opening and cases with zero shear or normal tractions.

Internal changes

	Fault implementation

Several changes have been made to the fault implementation, but none of these affect the user interface. The runtime performance is nearly identical with improved accuracy for spontaneous rupture (fault friction) simulations. These changes involved switching to using tractions (non-integrated quantities) for the Lagrange multipliers in the global coordinate system rather than integrated quantities in the fault coordinate system. Additionally, initial fault tractions are associated with the fault vertices and their interpolation uses the finite-element basis functions.

	Distribution of mesh among processors

The data structures used to distribute the mesh among processors have been improved. This reduces memory use and runtime for this stage of the simulations.

Known Issues

The custom line search used with the PETSc nonlinear solver (SNES)has difficulty handling some loading cases. In cases where the direction of the line search tends to be nearly orthogonal to the residual, the rate of convergence in the SNES iterations is extremely slow. In other cases the nonlinear solver gets stuck in a local minimum. We plan to improve the line search algorithm in a future release in order to resolve this issue and improve the rate of convergence in spontaneous rupture simulations.

Version 1.6.1

	Validation of user input

Added stricter requirements for descriptive labels of various objects, including spatial databases and friction models. The default labels are empty strings which do not result in useful error messages; the user is now required to specify a non-empty string for the labels. This makes errors related to spatial databases much easier to diagnose.

	Updates to manual

	Updated description of cell_info_fields for Neumann boundary condition. The description had not been updated to reflect the time-dependence introduced in version 1.4.

	Added steps 18 and 19 that discuss time-dependent Neumann boundary conditions to examples/3d/hex8.

Bug fixes

	Fixed bug in writing rupture information to VTK and HDF5 files when using multiple earthquake sources. Field names did not include name of rupture. This caused loss of information in VTK output and a corrupted Xdmf metadata file for HDF5 output.

	Fixed error in use of initial stress tensor with generalized Maxwell models. The initial stress tensor was added to the current stress tensor twice.

	Fixed two bugs in the fault friction implementation. One bug pertained to accounting for roundoff errors and convergence tolerances in computing the slip rate. Slip rates less than 1.0e-12 (nondimensionalized) are set to zero. The friction implementation for quasi-static problems contained a bug that resulted in slip extending over all of the fault rather than the appropriate isolated patch.

	Cleaned up Green’s function example (examples/greensfns/hex8) so that it runs without errors. Eliminated extraneous processing.

	Cleaned up meshing examples (examples/meshing), including elimination of superfluous pre-processing.

	Adjusted absolute tolerances for PETSc solves in examples/3d/hex8 so that solver terminates with desired convergence criterion.

	Updated examples/2d/subduction/geometry.jou to use APREPRO functions and variables to store id values.

Version 1.6.0

New features

	Parallel binary output via HDF5

Provides much faster output by writing HDF5 files in parallel, which can be accessed directly from Matlab or indirectly from ParaView or Visit via automatically created Xdmf files. Temporal data is stored in 3-D arrays, permitting slicing in time and/or space. See examples/3d/hex8 Steps 6-9 and examples/2d/subduction in the tutorials for examples.

	2-D generalized Maxwell viscoelastic bulk rheology

Added a 2-D generalized Maxwell viscoelastic bulk rheology corresponding to the plane strain version of the 3-D generalized Maxwell viscoelastic model.

	Time-weakening fault constitutive model

Added a linear time-weakening fault constitutive model. Some spontaneous rupture modelers prefer this model over linear slip-weakening because it is easier to maintain resolution of the cohesive zone.

	Global uniform parallel mesh refinement

Permits running larger problems through uniform global refinement of the mesh by a factor of 2 (reduces the node spacing by a factor of 2) after the mesh is distributed among processors. This allows running problems that are 4x larger in 2-D and 8x larger in 3-D. See examples/3d/tet4 Steps 2 and 4 for examples.

	Custom algebraic multigrid preconditioner

Adds a custom preconditioner for Lagrange multiplier degrees of freedom associated with fault slip via prescribed slip or spontaneous ruptures with algebraic multigrid preconditioning for quasi-static solutions. In most cases, this results in fewer iterations in the linear solve and the number of iterations increases much less with problem size. See examples/3d/tet4 Steps 2 and 4 for examples.

	PyLith installer utility

This utility provides a much more robust method for building PyLith and all of its dependencies from source, including dependency checking, installation to a central location, and creation of a shell script to set environment variables.

Bug fixes

	Fixed the fault friction implementation to correctly update Lagrange multiplier values when the slip is overestimated in an iteration. This primary fixes problems encountered with the use of the Dieterich-Ruina rate and state fault constitutive model.

	Corrected viscoelastic rheologies to properly account for a nonzero initial strain tensor.

Migrating from v1.5.x to v1.6.x

No changes in parameters are required. Version 1.6.1 does require users to specify descriptive labels for spatial databases and friction models.

Version 1.5.2

	PyLith 1.5.2 requires FIAT version 0.9.9 or later and an updated PETSc development version. It also requires users to update to the latest spatialdata version for compatibility of the SWIG generated files. These are included in the binary distribution, but users building PyLith from source will need to update FIAT, PETSc, and spatialdata.

Bug fixes

	Fixed setting of elastic constants in DruckerPrager3D and computation of the yield function. Some off-diagonal elasticity constants were off by a factor of 2.0 and the yield function was missing a factor of 0.5 and sqrt().

	Fixed computation of stable time step when using initial stresses with PowerLaw3D. If effective stress is zero, then stable time step is infinite.

	Re-enabled check for compatibility of quadrature scheme and cells for bulk rheologies.

	Added check to configure for compatible version of FIAT.

	Fixed bug where buffer for output of initial stresses for dynamic (spontaneous) rupture.

Version 1.5.1

Bug fixes

	Fixed dimensioning of velocity and acceleration fields in output. The scales were set to just the length scale rather than the length scale divided by the time scale and length scale divided by the time scale squared.

	Fixed partitioning of cohesive cells. Cohesive cells were ignored during partitioning of the mesh, so they were randomly distributed among processors.

Version 1.5.0

	Fault constitutive models

Added fault friction interface conditions with static friction, linear slip-weakening friction, and rate- and state-friction with the ageing law. The implementation can be used in static, quasi-static, and dynamic problems.

	Drucker-Prager elastoplastic bulk rheology

Added a Drucker-Prager elastoplastic bulk rheology. This is a perfect plasticity implementation (no hardening). This is a nonlinear constitutive model, so the nonlinear solver is required when this rheology is used. Refer to the ‘Material Models’ section of the manual.

	Plane strain Maxwell viscoelastic bulk rheology

Linear Maxwell viscoelastic rheology for plane strain problems.

	Finite-deformation formulation

Added a finite-deformation (rigid body motion and small strains) implementation of elasticity with stress calculated using the Second Piola Kirchhoff stress tensor and strains calculated using the Green-Lagrange strain tensor.

	Lumped Jacobian for explicit-time stepping

Added the option to lump cell Jacobian matrices to form a diagonal system Jacobian matrix for explicit time stepping. This decouples all degrees of freedom and permits use of a fast, trivial, direct solver.

	Optimized elasticity objects

Added optimized elasticity objects for the most popular cell types and basis functions (linear polynomials). For tri3 and tet4 cells with one quadrature point, the optimized implementations do not use reference (mapped) cells in order to reduce the number of operations.

	Scientific notation for ASCII VTK files

Data values in ASCII data files are written in scientific notation with user-specified precision.

	Nodeset names in CUBIT Exodus files

Use of nodeset names in CUBIT Exodus files for boundary conditions and faults. Users can specify to use nodeset names (default behavior) or ids.

	Velocity and slip rate as output fields

Velocity (domain and subdomain) and slip rate (fault) fields are can be requested as output fields. The fields are computed using the time-stepping algorithm and alleviates the need to compute them via post-processing.

	Dimensionless values in spatial databases no longer need artificial dimensions. Values without dimensions are understood by the parser as dimensionless quantities.

	Bug fixes

	Updating state variables did not retrieve physical properties for cell. Last physical properties retrieved were used. Physical properties are now retrieved when updating state variables.

	Fixed incorrect dimensioning of physical properties and state variables for the power-law rheology in output.

	Fixed memory bug for a fault in a 1-D mesh when constructing the cohesive cells.

Contributors

	Surendra Somala - fault friction implementation.

Migrating from v1.4.x to 1.5.x

Three changes to the code require updating old parameters settings for use with version 1.5.

	Recent releases of CUBIT include nodeset names in the Exodus file and PyLith now uses them to associate vertices with boundary conditions and faults. Use the NetCDF utility ncdump to examine the contents of the Exodus (.exo) file to see it it includes the variable ns_names. If it does, then use nodeset names rather than nodeset ids for boundary condition label properties. If your Exodus file does not contain nodeset names, then set the MeshIOCubit property use_nodeset_names to False to continue to use nodeset id values for boundary condition labels.

	The power-law constitutive parameters have been changed so that the parameter units are no longer dependent on the power-law exponent. This is a more logical implementation and allows (among other things) users to vary power-law parameters using a spatial database. Previously, it was not possible to vary power-law parameters unless everything used the same power-law exponent. The new implementation uses reference-strain-rate, reference-stress, and power-law-exponent to describe the material. This is described in the ‘Material Models’ section of the manual.

	The fault property normal_dir is obsolete. Only the property up_dir is required to enforce that positive slip is left-lateral, reverse, and fault-opening for dipping faults in 2-D and horizontal fault surfaces in 3-D. Previously, in 2-D positive slip was always left-lateral, but now the up-direction is used to enforce positive slip corresponds to reverse motion for dipping faults. For horizontal fault surfaces in 3-D a normal of (0,0,1) is assumed in determining the up-dip direction.

Migrating from v1.3.x to 1.4.x

A number of changes to the code require updating old parameter settings for use with version 1.4.

	The mesh “importer” is now called “reader”.

	The spatial database facility for a material, db, is separated into a db_properties and a db_initial_state. The initial stress and strain tensors are specified using the db_initial_stress and db_initial_strain facilities. The names of some of the spatial database values for physical properties for viscoelastic properties have changed.

	The code is now intelligent enough to determine the dimensions of the quadrature required (e.g., Quadrature2D and Quadrature2Din3D, etc). Setting the quadrature to the object for a given spatial dimension and cell dimension is no longer allowed because it is done automatically.

	The names of the output filters have changed and include suffixes Mesh or SubMesh to indicate that they operate on a mesh or submesh (e.g., CellFilterAvg is now CellFilterAvgMesh or CellFilterAvgSubMesh). This is related to the use of C++ templates.

	The DirichletPoints boundary condition has been renamed to DirichletBC.

	The procedure for enabling certain features no longer involves setting a “use” property to True. Instead, the features are enabled when the user sets the component to a facility. This applies to gravity, initial stresses, initial strains, and initial state variables, and time-dependent boundary conditions (Dirichlet, Neumann, and point force).

	Nondimensionalization of the problem eliminates the need to condition the fault constraints. The “mat_db” facility was removed.

	The Dirichlet and Neumann boundary conditions now follow a more general time dependence. The names of the facilities and the names of the values in the spatial databases are, in most cases, different.

	The FixedDOFDB has been renamed to ZeroDispDB in order to better reflect the type of spatial database.

Version 1.3.1

	Added stages to PETSc logging (--petsc.log_summary) to collect event logging into groups.

Bug fixes

	Fixed partitioning options. Partitioning options were ignored in the 1.3.0 release.

	Fixed assembling of Jacobian, residual, and fault sections across processors. This bug caused errors in the computation of the change in tractions over the fault surface.

Version 1.3.0

	New time stepping options

In addition to a uniform, user-specified time step, which is the default, there are two new time-stepping options. The user may supply a file with nonuniform time steps or, for quasi-static simulations, the user can request the code to compute the time step automatically. For the current bulk constitutive models, the automatically determined time step is independent of the deformation rate, so it is uniform.

	Initial stresses

Users may optionally supply an initial stress state for each material via a spatial database. The initial stress state can balance the gravitational body forces so that the model is in equilibrium without any deformation. This implementation of an initial stress state is a prelude to specifying an initial state for each material, which will be available in a future release.

Bug fixes

	Fixed labeling of physical properties in output for the Maxwell viscoelastic and generalized Maxwell viscoelastic materials (mu and lambda were switched).

Migrating from v1.2.x to v1.3.x

The implementation of different options for controlling the time step requires adjusting input parameters from those used with PyLith 1.2. The time stepping is specified under the time-stepping formulation rather than the problem (i.e., one level deeper).

Version 1.2.0

	New Sieve implementation

The previous implementation of Sieve provided a very generalized implementation of data structures and operations for finite-element meshes. Switching to a more rigid implementation in the new implementation streamlined the data structures, resulting in a significant reduction in the memory use for storing the mesh. This leads to an overall reduction in memory use of 25-30% in many cases.

	Multiple kinematic ruptures

A single kinematic rupture on a fault has been replaced by a dynamic array of kinematic ruptures. This allows creation of an arbitrary number of kinematic ruptures on each fault surface. By using spatial databases to control the spatial and temporal extent of slip in each rupture independently, slip from different earthquake ruptures can overlap in space and/or time. Additionally, the rupture time at each location is specified with respect to the origin time of the corresponding earthquake rupture.

	New slip time functions

	Step slip time function (now the default)

This slip time function simplifies specifying instantaneous slip in a quasi-static simulation compared with using the Brune slip time function.

	Constant slip rate slip time function

This slip time function permits prescribing a constant slip rate on the fault surface.

	Gravitational body forces

Gravitational body forces are implemented (they are turned off by default). The direction and acceleration of gravity may be specified.

	Fixed Makefile.am files to not delete source files during “make clean” when building in the source tree.

Migrating from v1.1.x to 1.2.x

There are two new features in PyLith version 1.2 that require users to adjust input parameters from those used with PyLith 1.1. A dynamic array of kinematic rupture replaces a single kinematic rupture on a fault. Additionally, the default slip time function is now a step-function. This eliminates the need to specify a peak slip rate for quasi-static simulations. When using PyLith version 1.2 with a problem previously setup for PyLith 1.1, look for warnings about unknown components and settings in the screen output at the beginning of a run.

Version 1.1.2

	Fixed bug in output of solution over sub-domain boundary surfaces in parallel.

	Fixed Makefile.am files to include documentation files in source distribution.

Version 1.1.1

	Fixed Makefile.am files to include files missing from the source distribution.

Version 1.1.0

	New boundary conditions

	Neumann (traction) boundary conditions

	Absorbing boundary conditions via simple, tuned dampers

	Dirichlet boundary conditions with displacement and/or velocity values

	New bulk constitutive models

	Generalized Maxwell viscoelastic model

	New output implementation

The output to VTK files has been completely rewritten. This new implementation includes output of physical properties and state variables associated with the bulk constitutive models, as well as output of fault information (earthquake rupture parameters and slip and traction time histories). Additionally, the VTK file with the solution no longer includes fault related values- it contains just the displacement field over the domain as one would expect. A user can now also request output of the solution over an arbitrary number of sub-domains of the domain boundary, e.g., the ground surface. For each of these different kinds of output, the frequency of output and the values included can be customized by the user. The names of the VTK files and the variable names have also been adjusted to permit animation of solutions within most VTK visualization tools.

	New spatial database implementations

Spatialdata includes two new spatial database implementations. The SCECCVMHDB provides a seamless interface to the SCEC CVM-H seismic velocity model for elastic material properties. The UniformDB permits creating a spatial database for uniform values using only .cfg files or the command line; this eliminates the need to create a SimpleDB database file with one location.

	Dynamic arrays of components in Pyre

Pyre now contains dynamic arrays of components, eliminating the need for containers for materials, boundary conditions, and faults.

	Better consistency checking of input parameters

	Uniqueness of material identifiers for materials and faults is enforced.

	The material identifier of each cell in the mesh is checked to make sure it matches a material model.

	Each boundary, interface condition, and output group is checked to make sure it exists in the mesh.

Bug fixes

	Fixed bug causing segmentation fault with multiple, non-overlapping Dirichlet boundary conditions applied to vertices.

	Fixed numerous bugs related to explicit time integration for dynamic problems.

	Eliminated several small memory errors.

	Fixed several bugs associated with writing VTK files in parallel.

Known issues

	PyLith still uses much more memory that PyLith 0.8 due to the current general Sieve implementation. A much more efficient, albeit less general Sieve implementation is under development. Additionally, distribution of the mesh will also be improved in a future release.

	The preconditioner for explicit time stepping provides relatively poor overall performance compared to a direct solve with traditional mass lumping. An appropriate preconditioner and traditional mass lumping will be supported in a future release.

Migrating from v1.0.x to 1.1.x

There are two new features in PyLith version 1.1 that require users to adjust input parameters from those used with PyLith 1.0. The elimination of containers in favor of the dynamic arrays of components present in the latest version of Pyre requires switching from setting the container to specifying the array of components on the command line or .cfg file. Additionally, the new implementation of output requires a completely new set of parameters. When using PyLith version 1.1 with a problem previously setup for PyLith 1.0, look for warnings about unknown components and settings in the output at the beginning of a run.

Version 1.0.2

	Performance optimizations have significantly reduced runtime and memory use relative to version 1.0.1. The default quadrature order for tetrahedral cells is now 1, which is appropriate for the default basis functions.

	Added checks to verify the compatibility of quadrature scheme for solid and cohesive cells.

Bug fixes

	In some cases, cohesive cells were not inserted into the finite-element mesh properly. The cells mixed together vertices from the different sides of the fault. A more efficient procedure for creating cohesive cells fixed this problem.

	Cell adjacency graph was created incorrectly which resulted in a poor quality of partitioning among processors.

	VTK output for meshes with N faults included cohesive cells for N-1 faults. Since VTK output does not understand cohesive cells, we now remove all cohesive cells from the VTK output.

	Using the SimpleDB in Spatialdata from Python limited interpolation to the “linear” scheme instead of allowing use of the “nearest” scheme. Setting the SimpleDB property to “nearest” and “linear” now works as expected.

	The reader for Spatialdata coordinate systems information did not correctly putback characters in the input stream, resulting in reading errors. The putback routines were fixed.

	Fault “up” and “normal” directions remained as string arrays when passed to the module, instead of being converted to float arrays.

Version 1.0.1

Bug fixes

	Cohesive cells lacked consistent orientation (inconsistent normals) in cases where cells were not ordered one side of the fault and then the other.

	Final slip of zero resulted in fault slip and slip increments of Nan.

	Parallel importing of meshes from LaGrit and CUBIT lacked guards against all processors reading the files.

Version 1.0.0

	Code now includes both dynamic and quasi-static solutions.

	Completely rewritten in Python and C++, with bindings provided by Pyrex/Pyrexembed.

	Easier specification of simulations:

	Parameters are all set using .cfg files (or .pml/command-line).

	Mesh may be directly imported from CUBIT, LaGriT, or using PyLith mesh ASCII format.

	Material properties, fault dislocations, and BC are all given using spatial databases, which are independent of mesh discretization.

	Faults are now implemented using cohesive elements:

	Easy specification of kinematic fault slip using a spatial database.

	Cohesive elements generate offsets in the mesh corresponding to fault slip, which increase the accuracy of displacement fields near faults and facilitate visualization of fault slip.

	Usage of cohesive elements will facilitate the upcoming addition of fault constitutive relations, where fault slip occurs in response to prescribed physics.

	Improved implicit time-stepping eliminates need to perform more than one iteration for linear rheologies.

	Code is now completely modular and object-oriented, which allows much easier addition of new features. Modules may be added without having to recompile the code.

	Features present in 0.8 that are not present in 1.0 that will be added in the near future.

	Traction boundary conditions

	Generalized Maxwell and Power-law Maxwell viscoelastic models

Development Plan

Future implementation of features is guided by several target applications, including

	Earthquake cycle modeling with quasi-static simulation of interseismic deformation and dynamic simulation of coseismic deformation.

	Inversion of geodetic data for slow slip events, fault creep, and long-term fault slip rates.

	Quasistatic and dynamic modeling of fluids and faulting.

Note

Because we strictly follow the semantic versioning guidelines [https://semver.org/], a minor release may get promoted to a major releases if we make changes to the public API (parameters).
This can happen if realize that we should modify the parameters to improve maintainability or prepare for future changes.

Version 4.1.0 (April 2024)

	Finish updating examples/subduction-3d [image: intermediate] [40%]

	Better preconditioners [image: expert] [67%]

	elasticity with fault [90%]

	incompressible elasticity [5%]

	poroelasticity [100%]

	Parallel mesh loading [image: expert] [15%]

Version 5.0.0 (June 2024)

	Add 2D and 3D examples for crustal faults with complex fault geometry [image: easy] [50%]

	Update some examples to illustrate how to select mesh size and use refinement and basis order.

	Convert from SWIG to pybind11 [image: intermediate] [0%]

	Add support for GeoModelGrids implementation of spatial databases for 3D seismic velocity models. [image: intermediate] [0%]

	Update coordinates with solution [image: intermediate] [10%]

Version 6.0.0 (TBD)

	Output of fault rupture auxiliary subfields [image: intermediate] [0%]

	Update VTK output to use vtu files rather than legacy vtk files [image: easy] [0%]

	Improve creation of auxiliary, diagnostic, and derived fields.

	Dynamic prescribed slip with diagonal Jacobian for explicit part of IMEX formulation [image: expert] [75%]

	Spontaneous rupture for quasistatic and dynamic simulations [image: expert] [20%]

	Reimplement Drucker-Prager elastoplastic bulk rheology [image: intermediate] [0%]

Version 7.0.0 (TBD)

	Improve robustness of HDF5 output by opening/closing at each time step [image: easy][0%]

	Add examples/barwaves-2d [image: expert] [15%]

	Update to current version of Pyre [image: difficult]

	Migrate examples to Jupyter notebooks [image: intermediate]

	More flexible specification of time-dependent boundary conditions. [image: difficult] [0%]

	Dirichlet boundary conditions with constraints on normal and tangential components. [image: difficult] [0%]

	Integration with libCEED for fast high order residual evaluation [image: expert]

Contribution led by Jed Brown.

	Add ability to output residual field during nonlinear solve for debugging [image: easy] [0%]

	Elasticity with self-gravitation [image: intermediate] [0%]

Features for Future Releases

	Coupling of problems with compatible meshes [image: difficult] [10%]

Implement “injectors” for solution and state variables.

	Reimplementation of small strain formulation for elasticity [image: difficult] [20%]

	Moment tensor point sources [5%]

Moment tensor point sources provide a mesh independent deformation source that is better suited for Green’s function calculations than slip on a fault surface via cohesive cells.

	Adaptive mesh refinement [image: expert]

	Line/point fluid sources in poroelasticity [image: expert] [20%]

	Consolidate HDF5 output into a single file [image: difficult]

	Drucker-Prager bulk rheology with relaxation to yield surface [image: intermediate]

	Drucker-Prager bulk rheology with strain hardening/softening [image: intermediate]

	Adjoint for data assimilation [image: difficult]

	Fault with both prescribed slip and spontaneous rupture [image: difficult]

Use fault constitutive model to control slip on fault except during episodes of prescribed slip. Need some way to describe when to turn on/off prescribed slip.

User Guide

	Introduction
	New in PyLith Version 3.0.0

	History

	PyLith Workflow

	Architecture
	Pyre

	PETSc

	Getting Help and Reporting Bugs

	Installation
	Installation of Binary Executable
	Linux and macOS

	Windows

	Extending PyLith or Integrating Other Software Into PyLith

	Installation from Source

	Verifying PyLith is Installed Correctly

	Configuration on a Cluster

	Governing Equations
	Derivation of Elasticity Equation

	Finite-Element Formulation with PETSc
	Jacobian

	PETSc TS Notes
	Explicit Time Stepping

	Implicit Time Stepping

	Implicit-Explicit Time Stepping

	Elasticity with Infinitesimal Strain and No Faults
	Quastistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Absorbing Boundary
	Residual Pointwise Function

	Bulk Rheologies for Elasticity
	Elasticity Constitutive Models

	Linear Isotropic Elastic Models

	Linear Viscoelastic Models

	Generalized Maxwell Viscoelastic Models

	Effective Stress Formulation for Viscoelastic Materials

	Power-law Viscoelastic Models

	Elasticity with Infinitesimal Strain and Prescribed Slip on Faults
	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Incompressible Isotropic Elasticity with Infinitesimal Strain (Bathe)
	Residual Pointwise Functions

	Jacobians Pointwise Functions

	Poroelasticity with Infinitesimal Strain and No Faults
	Constitutive Behavior
	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Porosity State Variable
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobians Pointwise Functions

	Running PyLith
	Overview of Running PyLith
	Command Line Interface
	Running in Parallel on a Desktop or Laptop

	Running in Parallel on a Cluster

	Launchers and Schedulers

	Using a Job Scheduler
	LSF Batch System

	PBS Batch System

	Running without a Job Scheduler

	Defining the Simulation

	Organization of Simulation Components

	Simulation Input and Output

	Nondimensionalization

	Finite-Element Implementation User Interface
	Fields and Subfields
	Solution Field

	Auxiliary Field

	Discretization

	Setting PyLith Parameters
	Units

	Using the Command Line

	Using a .cfg File

	Using a .pml File

	Specification and Placement of Configuration Files

	PyLith Application
	Simulation Metadata

	PETSc Options
	Default PETSc Options
	Solver Options
	Quasistatic Elasticity

	Quasistatic Incompressible Elasticity

	Quasistatic Poroelasticity

	Monitoring

	Testing

	User-Specified PETSc Options
	Solver Options

	Finite-Element Mesh
	Mesh Importer
	Mesh generation with CUBIT and Gmsh
	CUBIT

	Gmsh

	2D meshing

	3D meshing

	ASCII Mesh Files - MeshIOAscii

	CUBIT (Exodus II) Mesh Files - MeshIOCubit

	Gmsh Files - MeshIOPetsc
	gmsh_utils
	GenerateMesh Application Template

	MaterialGroup

	VertexGroup

	Distribution among Processes - Distributor

	Uniform Global Refinement - Refiner

	Utilities
	pyre_doc.py

	pylith_cfgsearch

	pylith_runner

	pylith_dumpparameters

	pylith_eqinfo

	pylith_genxdmf

	pylith_powerlaw_gendb

	PyLith Parameter Viewer
	Installation

	Running the Parameter Viewer
	Generate the parameter JSON file

	Start the web server

	Using the Parameter Viewer
	Version Information

	Parameter Information

	Troubleshooting
	Tips and Hints For Running PyLith

	Common Error Messages
	Import Error and Missing Library

	Unrecognized Property ‘p4wd’

	Detected zero pivot in LU factorization

	Bus Error

	Segmentation Fault

	Defining Simulations
	Types of Simulations
	Time-Dependent Problem (TimeDependent)
	Initial Conditions
	InitialConditionDomain

	InitialConditionPatch

	Numerical Damping in Explicit Time Stepping

	Green’s Functions Problem (GreensFns)

	Output
	Progress Monitors
	ProgressMonitorTime

	ProgressMonitorStep

	Observers
	Output Observers

	Solution Observers
	Output at Discrete Points

	PointsList Reader

	Physics Observer

	Data Writers
	HDF5 Output
	HDF5 Utilities

	VTK Output

	Output Triggers
	Decimate by time step

	Decimate by time

	Physics Implementations
	Materials
	Specifying Material Properties

	Material Implementations
	Elasticity

	Incompressible Elasticity

	Poroelasticity

	Boundary Conditions
	Assigning Boundary Conditions

	Creating Sets of Vertices

	Arrays of Boundary Condition Components

	Diagnostic Information

	Boundary Condition Implementations
	Time-Dependent Boundary Conditions
	Time-Dependent Dirichlet Boundary Conditions

	Neumann Time-Dependent Boundary Conditions

	Absorbing Boundary Conditions

	Fault Interface Conditions
	Conventions

	Fault Implementation
	Prescribed Slip (FaultCohesiveKin)
	Prescribed Slip Parameters (KinSrc)
	Step-Function Slip Time Function (KinSrcStep)

	Constant Slip Rate Slip Time Function (KinSrcConstRate)

	Ramp Slip Time Function (KinSrcRamp)

	Brune Slip Time Function (KinSrcBrune)

	Liu-Cosine Slip Time Function (KinSrcLiuCosine)

	User-Time History Slip Time Function (KinSrcTimeHistory)

	Output

	Fault Slip Impulses (FaultCohesiveImpulses)
	Output

	PyLith Components
	apps
	EqInfoApp
	Pyre Facilities

	Pyre Properties

	PyLithApp
	Pyre Facilities

	Pyre Properties

	bc
	AbsorbingDampers
	Pyre Facilities

	Pyre Properties

	Example

	AuxSubfieldsAbsorbingDampers
	Pyre Facilities

	Example

	AuxSubfieldsTimeDependent
	Pyre Facilities

	Example

	BoundaryCondition
	Pyre Facilities

	Pyre Properties

	DirichletTimeDependent
	Pyre Facilities

	Pyre Properties

	Example

	NeumannTimeDependent
	Pyre Facilities

	Pyre Properties

	Example

	ZeroDB
	Pyre Properties

	Example

	faults
	AuxSubfieldsFault
	Pyre Facilities

	Example

	FaultCohesive
	Pyre Facilities

	Pyre Properties

	FaultCohesiveImpulses
	Pyre Facilities

	Pyre Properties

	Example

	FaultCohesiveKin
	Pyre Facilities

	Pyre Properties

	Example

	KinSrc
	Pyre Facilities

	Pyre Properties

	KinSrcBrune
	Pyre Facilities

	Pyre Properties

	Example

	KinSrcConstRate
	Pyre Facilities

	Pyre Properties

	Example

	KinSrcLiuCos
	Pyre Facilities

	Pyre Properties

	Example

	KinSrcRamp
	Pyre Facilities

	Pyre Properties

	Example

	KinSrcStep
	Pyre Facilities

	Pyre Properties

	Example

	KinSrcTimeHistory
	Pyre Facilities

	Pyre Properties

	Example

	SingleRupture
	Pyre Facilities

	materials
	AuxSubfieldsElasticity
	Pyre Facilities

	Example

	AuxSubfieldsIsotropicLinearElasticity
	Pyre Facilities

	Example

	AuxSubfieldsIsotropicLinearGenMaxwell
	Pyre Facilities

	Example

	AuxSubfieldsIsotropicLinearMaxwell
	Pyre Facilities

	Example

	AuxSubfieldsIsotropicLinearPoroelasticity
	Pyre Facilities

	Example

	AuxSubfieldsIsotropicPowerLaw
	Pyre Facilities

	Example

	AuxSubfieldsPoroelasticity
	Pyre Facilities

	Example

	DerivedSubfieldsElasticity
	Pyre Facilities

	Example

	Elasticity
	Pyre Facilities

	Pyre Properties

	Example

	Homogeneous
	Pyre Facilities

	IncompressibleElasticity
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicLinearElasticity
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicLinearGenMaxwell
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicLinearIncompElasticity
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicLinearMaxwell
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicLinearPoroelasticity
	Pyre Facilities

	Pyre Properties

	Example

	IsotropicPowerLaw
	Pyre Facilities

	Pyre Properties

	Example

	Material
	Pyre Facilities

	Pyre Properties

	Poroelasticity
	Pyre Facilities

	Pyre Properties

	Example

	RheologyElasticity
	Pyre Facilities

	RheologyIncompressibleElasticity
	Pyre Facilities

	RheologyPoroelasticity
	Pyre Facilities

	meshio
	DataWriter

	DataWriterHDF5
	Pyre Properties

	Example

	DataWriterHDF5Ext
	Pyre Properties

	Example

	DataWriterVTK
	Pyre Properties

	Example

	MeshIOAscii
	Pyre Facilities

	Pyre Properties

	Example

	MeshIOCubit
	Pyre Facilities

	Pyre Properties

	Example

	MeshIOObj

	MeshIOPetsc
	Pyre Facilities

	Pyre Properties

	OutputObserver
	Pyre Facilities

	Pyre Properties

	OutputPhysics
	Pyre Facilities

	Pyre Properties

	Example

	OutputSoln
	Pyre Facilities

	Pyre Properties

	OutputSolnBoundary
	Pyre Facilities

	Pyre Properties

	Example

	OutputSolnDomain
	Pyre Facilities

	Pyre Properties

	Example

	OutputSolnPoints
	Pyre Facilities

	Pyre Properties

	Example

	OutputTrigger

	OutputTriggerStep
	Pyre Properties

	Example

	OutputTriggerTime
	Pyre Properties

	Example

	PointsList
	Pyre Facilities

	Pyre Properties

	Example

	problems
	GreensFns
	Pyre Facilities

	Pyre Properties

	Example

	InitialCondition
	Pyre Properties

	InitialConditionDomain
	Pyre Facilities

	Pyre Properties

	Example

	InitialConditionPatch
	Pyre Facilities

	Pyre Properties

	Example

	Physics
	Pyre Facilities

	Problem
	Pyre Facilities

	Pyre Properties

	ProblemDefaults
	Pyre Properties

	Example

	ProgressMonitor
	Pyre Properties

	ProgressMonitorStep
	Pyre Properties

	Example

	ProgressMonitorTime
	Pyre Properties

	Example

	SingleProblem
	Pyre Facilities

	SolnDisp
	Pyre Facilities

	SolnDispLagrange
	Pyre Facilities

	Example

	SolnDispPres
	Pyre Facilities

	Example

	SolnDispPresLagrange
	Pyre Facilities

	Example

	SolnDispPresTracStrain
	Pyre Facilities

	Example

	SolnDispPresTracStrainVelPdotTdot
	Pyre Facilities

	Example

	SolnDispPresVel
	Pyre Facilities

	Example

	SolnDispVel
	Pyre Facilities

	Example

	SolnDispVelLagrange
	Pyre Facilities

	Example

	Solution
	Pyre Facilities

	SolutionSubfield
	Pyre Properties

	SubfieldDisplacement
	Pyre Properties

	Example

	SubfieldLagrangeFault
	Pyre Properties

	Example

	SubfieldPressure
	Pyre Properties

	Example

	SubfieldPressureDot
	Pyre Properties

	Example

	SubfieldTemperature
	Pyre Properties

	Example

	SubfieldTraceStrain
	Pyre Properties

	Example

	SubfieldTraceStrainDot
	Pyre Properties

	Example

	SubfieldVelocity
	Pyre Properties

	Example

	TimeDependent
	Pyre Facilities

	Pyre Properties

	Example

	testing
	UnitTestApp
	Pyre Facilities

	Pyre Properties

	topology
	Distributor
	Pyre Facilities

	Pyre Properties

	Example

	MeshGenerator

	MeshImporter
	Pyre Facilities

	Pyre Properties

	Example

	MeshImporterDist
	Pyre Facilities

	MeshRefiner

	RefineUniform
	Pyre Properties

	Example

	Subfield
	Pyre Properties

	utils
	CollectVersionInfo

	DumpParameters

	DumpParametersAscii
	Pyre Properties

	Example

	DumpParametersJson
	Pyre Properties

	Example

	EmptyBin

	NullComponent

	PetscDefaults
	Pyre Properties

	Example

	PetscManager
	Example

	PropertyList

	SimulationMetadata
	Pyre Properties

	Example

	Examples
	Overview
	Prerequisites

	Input Files

	Visualizing PyLith Output

	Examples
	Axial and Shear Deformation (2D Box)
	Overview

	Example Workflow
	Mesh Description

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Axial and Shear Deformation (3D Box)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Horizontal Cross-Section of Strike-Slip Fault (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 1 with Cubit Mesh

	Step 2: Single Earthquake Rupture and Velocity Boundary Conditions
	Simulation parameters
	Boundary conditions

	Running the simulation

	Visualizing the results

	Step 3: Multiple Earthquake Ruptures and Velocity Boundary Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Variable Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Green’s Functions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Least Squares Fault Slip Inversion
	Plotting the results

	Step 7: Bayesian Fault Slip Inversion
	Inversion using original CATMIP algorithm
	Step 7a: Plotting the results

	Suggested Exercises

	Vertical Cross-Section of a Reverse Fault with Splay (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information

	Step 1: Gravitational Body Forces
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Gravitational Body Forces with Reference Stress
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Gravitational Body Forces with Incompressible Elasticity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Surface Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Slip on Two Faults and Elastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 7: Slip on Two Faults and Maxwell Viscoelastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 8: Slip on Two Faults and Power-law Viscoelastic Materials
	Simulation parameters

	Power-law spatial database

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Vertical Cross-Section of Subduction Zone (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Quasistatic Interseismic Deformation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Quasistatic Earthquake Cycle
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Subduction Zone (3D)
	Overview

	Example Workflow
	Cubit Mesh
	Setup

	Meshing using Journal Scripts

	Visualizing the Mesh

	Common Information

	Step 1: Axial Compression
	Simulation parameters

	Visualizing the results

	Step 2: Earthquake Rupture and Postseismic Relaxation
	Simulation parameters

	Visualizing the results

	Step 3: Interseismic Deformation
	Simulation parameters

	Visualizing the results

	Step 4: Earthquake Cycle with Prescribed Slip
	Simulation parameters

	Visualizing the results

	Suggested Exercises

	2D Magma Reservoir Using Poroelasticity
	Overview

	Example Workflow
	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Magma inflation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Magma inflation with evolution of porosity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Troubleshooting (2D)
	Example Workflow
	Error Messages
	Configuration Errors

	Runtime Errors

	Step 1: Gravitational Body Forces

	Step 1: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Slip on Two Faults

	Step 6: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 6
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 7
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 8
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 9
	Error Message

	Troubleshooting Strategy

	Resolution

	Additional Examples
	CUBIT Meshing Examples

	Troubleshooting Examples

	Code Verification Benchmarks

	Benchmarks
	Overview
	Strike-Slip Benchmark
	Problem Description

	Running the Benchmark

	Benchmark Results
	Solution Accuracy

	Performance

	Savage and Prescott Benchmark
	Problem Description

	Running the Benchmark

	Benchmark Results

	SCEC Dynamic Rupture Benchmarks

	Glossary
	Pyre

	DMPlex

	PyLith

	File Formats
	PyLith Mesh ASCII File

	Points List File

	Appendices
	Analytical Solutions
	Airy Stress Functions
	Example

Introduction

PyLith is portable, scalable software for simulation of crustal deformation across spatial scales ranging from meters to hundreds of kilometers and temporal scales ranging from milliseconds to thousands of years.
Its primary applications are quasistatic and dynamic modeling of earthquake faulting.

	New in PyLith Version 3.0.0

	History

	PyLith Workflow

	Architecture
	Pyre

	PETSc

	Getting Help and Reporting Bugs

New in PyLith Version 3.0.0

	Major rewrite of the finite-element implementation to support higher order discretizations and flexible specification of the governing equations.

	Use of pointwise functions to implement governing equations;

	Higher order discretizations;

	Problem specification independent of cell shape (quadrilateral vs triangle, hexahedron vs tetrahedron);

	Incompressible elasticity;

	Poroelasticity; and

	Use of PETSc time-stepping algorithms.

	Simulations now require metadata, such as description, command line arguments, and PyLith version compatibility.

	New utilities

	pyre_doc.py Display facilities and components available for a Pyre component;

	pylith_cfgsearch Find files matching criteria for metadata; and

	pylith_runner Run all simulations in a specified path.

	New examples

	Simple 2-D and 3-D examples of Dirichlet and Neumann boundary conditions without faults;

	Prescribed slip on a 2-D through-going strike-slip fault;

	Gravitational body forces with elasticity and incompressible elasticity;

	Distributed surface loads using Neumann boundary conditions; and

	Prescribed slip on a reverse fault with a splay fault.

	Documentation is now available online at https://pylith.readthedocs.io.

	Import finite-element meshes from Gmsh in addition to Cubit (Exodus II) and LaGriT.

	Updated to Python 3.

	Pythia/Pyre, spatialdata, and PyLith have all been migrated to Python 3; and

	The nemesis package has been merged into Pyre/Pyre.

See Release Notes for a summary of features and bug fixes for each release.

History

PyLith 1.0 was the first version to allow the solution of both implicit (quasistatic) and explicit (dynamic) problems and was a complete rewrite of the original PyLith (version 0.8).
PyLith 1.0 combines the functionality of EqSim [Aagaard et al., 2001], [Aagaard et al., 2001] and PyLith 0.8.
PyLith 0.8 was a direct descendant of LithoMop and was the first version that ran in parallel, as well as providing several other improvements over LithoMop.
LithoMop was the product of major re-engineering of Tecton, a finite-element code for simulating static and quasistatic crustal deformation.
The major new features present in LithoMop included dynamic memory allocation and the use of the Pyre simulation framework and PETSc solvers.
EqSim was written by Brad Aagaard to solve problems in earthquake dynamics, including rupture propagation and seismic wave propagation.

The release of PyLith 1.0 has been followed by additional releases that expandthe number of features as well as improve performance.
The PyLith 1.x series of releases allows the solution of both quasistatic and dynamic problems in one, two, or three dimensions.
The code runs in either serial or parallel, and the design allows for relatively easy scripting using the Python programming language.
Material properties and values for boundary and fault conditions are specified using spatial databases, which permit easy prescription of complex spatial variations of properties and parameters.
Simulation parameters are generally specified through the use of simple ASCII files or the command line.
At present, mesh information may be provided using a simple ASCII file (PyLith mesh ASCII format) or imported from CUBIT or Gmsh.
The elements currently available include a linear bar in 1D, linear triangles and quadrilaterals in 2D, and linear tetrahedra and hexahedra in 3D.
Materials presently available include isotropic elastic, linear Maxwell viscoelastic, generalized Maxwell viscoelastic, power-law viscoelastic, and Drucker-Prager elastoplastic.
Boundary conditions include Dirichlet (prescribed displacements and velocities), Neumann (traction), point forces, and absorbing boundaries. Cohesive elements are used to implement slip across interior surfaces (faults) with both kinematically-specified fault slip and slip governed by fault constitutive models.
PyLith also includes an interface for computing static Green’s functions for fault slip.

PyLith 2.0 replaced the finite-element data structures provided by the C++ Sieve implementation with those provided by the C DMPlex implementation.
The newly developed DMPlex implementation by the PETSc developers conforms to the PETSc data manager (DM) interface, thereby providing tighter integration with other PETSc data structures, such as vectors and matrices.
Other improvements include significantly reduced memory use and memory balancing.

PyLith 3.0 involves restructuring the code to permit more flexible specifications of governing equations and discretization and use of PETSc time-stepping algorithms.
The finite-element integrations, constraints, and transformations are done through a suite of point-wise functions.
The PETSc DMPlex interface calls these functions to perform the finite-element integrations.

PyLith is under active development and we expect a number of additions and improvements in the near future.
Likely enhancements will include additional bulk and fault constitutive models, coupled quasistatic and dynamic simulations for earthquake cycle modeling, and coupling between elasticity, heat flow, and/or fluid flow.

PyLith Workflow

PyLith is one component in the process of investigating problems in tectonics (Fig. 1).
Given a geological problem of interest, you must first provide a geometrical representation of the desired domain.
Once you define the geometry, ou need to discretize it as a finite-element mesh.
PyLith presently provides three mesh importing options: CUBIT Exodus format, Gmsh ASCII and binary files, and PyLith mesh ASCII format.
The modeling of the physical processes of interest is performed by a code such as PyLith.
Present output consists of VTK or HDF5/Xdmf files which can be used by a number of visualization codes (e.g., ParaView, Visit, and Matlab).

[image: Workflow involved in going from geologic structure to problem analysis.]
Fig. 1 Workflow involved in going from geologic structure to problem analysis.

Architecture

PyLith is separated into modules to encapsulate behavior and facilitate use across multiple applications.
This allows expert users to replace functionality of a wide variety of components without recompiling or polluting the main code.
PyLith employs external packages (see Fig. 2) to reduce development time and enhance computational efficiency.

[image: Diagram of PyLith dependencies]
Fig. 2 Diagram of PyLith dependencies.
PyLith makes direct use of several other packages, some of which have their own dependencies.

PyLith is written in two programming languages.
High-level code is written in Python; this rich, expressive interpreted language with dynamic typing reduces development time and permits flexible addition of user-contributed modules.
This high-level code makes use of Pyre, a science-neutral simulation framework developed at Caltech by Michael Aivazis, to link the modules together at runtime and gather user-input.
Low-level code is written in C++, providing fast execution while still allowing an object-oriented implementation.
This low-level code relies on PETSc for finite-element data structures, time-stepping algorithms, and solvers.
We use SWIG to create Python bindings for the C++ objects.

In writing PyLith 1.0, the code was designed to be object-oriented and modular.
Each type of module is accessed through a specified interface (set of functions).
This permits adding, replacing, and rewriting modules without affecting other parts of the code.
This code structure simplifies code maintenance and development. Extending the set of code features is also easier, since developers can create new modules derived from the existing ones.

The current code design leverages Pyre and PETSc extensively.
We use Pyre to define the simulation as a hierarchy of components and specify the parameters.
Most of the PyLith source code pertains to implementing the geodynamics, such as the governing equations, bulk rheology, boundary conditions, and earthquake rupture via slip on faults.

Nemesis (Pyre subpackage) allows PyLith to run Python using the Message Passing Interface (MPI) for parallel processing.
Additional, indirect dependencies (see Figure \vref{fig:pylith:dependencies}) include numpy (efficient operations on numerical arrays in Python), Proj.4 (geographic projections).

During development we implement three levels of testing: (1) unit testing, which occurs at the class/function level, (2) testing via the Method of Manufactured Solutions to test the finite-element implementation of the governing equations, and (3) full-scale testing, which involves complete PyLith simulations.
We run these tests throughout the development cycle to expose bugs and isolate their origin.
As additional changes are made to the code, the tests are rerun to help prevent introduction of new bugs.

Additionally, we use community benchmarks, such as developed through the Southern California Earthquake Center for crustal deformation and dynamic rupture to determine the relative local and global error (see Chapter \vref{sec:benchmarks}).

Pyre

Pyre is an object-oriented environment capable of specifying and launching numerical simulations on multiple platforms, including Beowulf-class parallel computers and grid computing systems.
Pyre allows the binding of multiple components such as solid and fluid models used in Earth science simulations, and different meshers.
The Pyre framework enables the elegant setup, modification and launching of massively parallel solver applications.

[image: Diagram of Pyre architecture]
Fig. 3 Diagram of Pyre architecture.
The integration framework is a set of cooperating abstract services.

Pyre as a framework is a combination of software and design philosophy that promotes the reuse of code.
Applications based on Pyre will look similar to those written in any other object-oriented language.

The Pyre framework incorporates features aimed at enabling the scientific non-expert to perform tasks easily without hindering the expert.
Target features for end users allow complete and intuitive simulation specification, reasonable defaults, consistency checks of input, good diagnostics, easy access to remote facilities, and status monitoring.
Target features for developers include easy access to user input, a shorter development cycle, and good debugging support.

PETSc

PyLith 2.x and later make use of a set of data structures and routines in PETSc called DMPlex, which is still under active development.
DMPlex provides data structures and routines for for representing and manipulating computational meshes, and it greatly simplifies finite-element computations.
DMPlex represents the topology of the domain.
Zero volume elements, called cohesive cells, are inserted along all fault surfaces to implement kinematic (prescribed) or dynamic (constitutive model) implementations of fault slip.
Material properties and other parameters are represented as scalar and vector fields over the mesh using vectors to store the values and sections to map vertices, edges, faces, and cells to indices in the vector.
For each problem, functions are provided to calculate the residual and its Jacobian.
All numerical integration is done in these functions, and parallel assembly is accomplished using the get/set closure paradigm of the DMPlex framework.

PETSc [https://petsc.org], the Portable, Extensible Toolkit for Scientific computation, provides a suite of routines for parallel, numerical solution of partial differential equations for linear and nonlinear systems with large, sparse systems of equations.
PETSc includes time-stepping algorithms and solvers that implement a variety of Newton and Krylov subspace methods.
It can also interface with many external packages, including ESSL, MUMPS, Matlab, ParMETIS, PVODE, and Hypre, thereby providing additional solvers and interaction with other software packages.

PETSc includes interfaces for FORTRAN 77/90, C, C++, and Python for nearly all of the routines, and PETSc can be installed on most Unix systems.
Users can use PETSc parallel matrices, vectors, and other data structures for most parallel operations, eliminating the need for explicit calls to Message Passing Interface (MPI) routines.
Many settings and options can be controlled with PETSc-specific command-line arguments, including selection of preconditions, solvers, and generation of performance logs.

Getting Help and Reporting Bugs

The CIG forum has a category dedicated to CIG issues associated with PyLith.
You can discuss PyLith, get help with installation, and more at https://community.geodynamics.org/c/pylith/29.

CIG uses GitHub for source control and bug tracking.
If you find a bug in PyLith, please submit a bug report to the GitHub issue tracking system for PyLith https://github.com/geodynamics/pylith/issues.
Of course, it is helpful to first check to see if someone else already submitted a report related to the issue; one of the CIG developers may have posted a work around to the problem.
You can reply to a current issue by clicking on the issue title.
To submit a new issue, click on the New Issue button.

When submitting a question about running a simulation, be sure to include the info:

	Indicate which PyLith version you are using along with whether you are using the binary, container, or building from source.

	Describe what you are trying to do

	Overview of the problem and boundary conditions (diagrams are very helpful)

	2-D or 3-D

	Cell type (tri, quad, hex, or tet)

	Type of fault: prescribed slip or spontaneous rupture

	Attach the PyLith parameters .json file generated by running pylith or pylith_dumpparameters.

	Send the entire error message, not just what you think is important (entire log is best).

Installation

Fig. 4 provides a guide to select the appropriate method for installing PyLith.
Installation of PyLith on a desktop or laptop machine is, in most cases, very easy.
Binary packages have been created for Linux and macOS platforms.
For Windows users, we recommend installing the Windows Subsystem for Linux and using the Linux binary (see instructions in Section Windows).
You can also run PyLith inside a Docker container, which provides a virtual Linux environment on any platform that Docker supports, including Linux, macOS, and Windows.
Installation of PyLith on other operating systems - or installation on a cluster - requires building the software from the source code, which can be difficult for inexperienced users.
We have created a small utility called PyLith Installer that makes installing PyLith and all of its dependencies from source much easier.

[image: Guide for selecting the appropriate installation choice based on a hardware and intended use. The installation options are discussed in more detail in the following sections.]
Fig. 4 Guide for selecting the appropriate installation choice based on a hardware and intended use.
The installation options are discussed in more detail in the following sections.

Help for installing and using PyLith is available from both a CIG forum and the GitHub issue tracking system https://github.com/geodynamics/pylith/issues.
See Getting Help and Reporting Bugs for more information.

Installation of Binary Executable

The binaries are intended for users running on laptops or desktop computers (as opposed to clusters).
The binaries contain the compilers and header files, so users wishing to extend the code can still use the binary and do not need to build PyLith and its dependencies from source.
See Contributing to PyLith for more information on extending PyLith.

Binary executables are available for Linux (glibc 2.12 and later) and macOS (Intel 11.0 and later) from the PyLith web page https://geodynamics.org/resources/pylith/.
Users running macOS on MX based computers can use the Intel version.
Users running Windows 10 build 14316 and later can install a Linux bash environment and use the PyLith binary for Linux (see Section Windows for more information).

Tip

On Linux systems you can check which version of glibc you have by running ldd-version

On macOS systems you can check the operating system version by clicking on the Apple icon and About This Mac.

Linux and macOS

	Open a terminal window and change to the directory where you want to place the distribution.

$ cd $HOME
$ mkdir pylith
$ cd pylith

	Download the Linux or macOS tarball from the PyLith web page
https://geodynamics.org/resources/pylith/supportingdocs/, and save it to
the desired location, e.g., $HOME/pylith.

	Unpack the tarball.

 # Linux 64-bit
 $ tar -xzf pylith-4.0.0-linux-x86_64.tar.gz

 # macOS
 $ tar -xzf pylith-4.0.0-macOS-10.15-x86_64.tar.gz

	Set environment variables.
The provided setup.sh script only works if you are using bash shell.
If you are using a different shell, you will need to alter how the environment variables are set in setup.sh.

$ source setup.sh
Ready to run PyLith.

Tip

To bypass macOS quarantine restrictions, simply use command line program curl to download the tarball from within a terminal rather than using a web browser.

curl -L -O https://github.com/geodynamics/pylith/releases/download/v4.0.0/pylith-4.0.0-macOS-10.15-x86_64.tar.gz

Alternatively, if you do download the tarball using a web browser, after you unpack the tarball you can remove the macOS quarantine flags using the following commands (requires Administrator access):

Show extended attributes
xattr ./pylith-4.0.0-macOS-10.15-x86_64

Output should be
com.apple.quarantine

Remove quarantine attributes
sudo xattr -r -d com.apple.quarantine ./pylith-4.0.0-macOS-10.15-x86_64

Warning

The binary distribution contains PyLith and all of its dependencies.
If you have any of this software already installed on your system, you need to be careful in setting up your environment so that preexisting software does not conflict with the PyLith binary.
By default the setup.sh script will prepend to the PATH and PYTHONPATH (for macOS and Linux) and LD_LIBRARY_PATH (for Linux) environment variables.
This will prevent most conflicts.

Windows

PyLith is developed within the Unix/Linux framework, and we do not provide a native PyLith binary distribution for Windows.
The preferred approach to installing PyLith on a computer running Windows is to enable use of a Linux subsystem.
This permits use of the PyLith Linux x86_64 binary within the bash environment.

To enable the Linux subsystem on Windows 10 build 14316 and later (users running an earlier Windows build should use the PyLith Docker container):

	Go to Settings → Security .

	Under For developers select Developer mode.
This step should not be required for Windows build 16215 and later.

	Go to Control Panel → Programs → Turn Windows Features On or Off.

	Enable Windows Subsystem for Linux and click OK .

	Restart the computer.

	Go to Start → bash.
You will be prompted to download “Bash on Ubuntu on Windows” from the Windows Store.
Create a user account and password for the bash environment.

	Install the PyLith Linux x86 binary within the bash environment following the instructions for installing the PyLith binary for Linux.
You will run PyLith within the bash environment just like you would for a Linux operating system.

Tip

To be able to use Gmsh within the Windows Subsystem for Linux, you can install libglu1-mesa-dev.
This provides the graphics libraries needed by Gmsh.

Extending PyLith or Integrating Other Software Into PyLith

Note

New in v3.0.0

We strongly recommend using the PyLith development environment Docker container [https://pylith-installer.readthedocs.io/en/latest/devenv/index.html] if you want to extend PyLith or integrate PyLith into other software.

Installation from Source

PyLith depends on a number of other packages (see Fig. 2).
This complicates building the software from the source code.
In many cases some of the packages required by PyLith are available as binary packages.
On the one hand, using the binary packages for the dependencies removes the burden of configuring, building, and installing these dependencies, but that can come with its own host of complications if consistent compiler and configuration settings are not used across all of the packages on which PyLith depends.
This is usually not an issue with Linux distributions, such as Fedora, Ubuntu, and Debian that have good quality control; it can be an issue with macOS package managers, such as Fink, MacPorts, and Homebrew, where there is limited enforcement of consistency across packages.
Nevertheless, PyLith can be built on most systems provided the instructions are followed carefully.
PyLith is developed and tested on Linux and macOS.

A small utility, PyLith Installer, removes most of the obstacles in building PyLith and its dependencies from source.
For each package this utility downloads the source code, configures it, builds it, and installs it.
This insures that the versions of the dependencies are consistent with PyLith and that the proper configure arguments are used.
The minimum requirements for using the PyLith installer are a C compiler, tar, and wget or curl. Detailed instructions for how to install PyLith using the installer are included in the installer distribution, which is available from the PyLith web page https://geodynamics.org/resources/pylith/supportingdocs/.

Verifying PyLith is Installed Correctly

The easiest way to verify that PyLith has been installed correctly is to run one or more of the examples supplied with the binary and source code.
In the binary distribution, the examples are located in src/pylith-4.0.0/examples while in the source distribution, they are located in pylith-4.0.0/examples.
Examples discusses how to run and visualize the results for the examples.
To run the example discussed in Section Axial and Shear Deformation (2D Box):

$ cd examples/box-2d
$ pylilth step01_axialdisp.cfg
A bunch of stuff will be written to stdout. The last few lines should be:
 >> .../lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

If you run PyLith in a directory without any input, you will get the error
message:

$ pylith
 >> {default}::
 -- pyre.inventory(error)
 -- metadata.description <- ''
 -- Nonempty string required.
 >> {default}::
 -- pyre.inventory(error)
 -- metadata.arguments <- '[]'
 -- List of command line arguments required.
 >> {default}::
 -- pyre.inventory(error)
 -- metadata.pylith_version <- '[]'
 -- List of PyLith version constraints required.
 >> {default}::
 -- pyre.inventory(error)
 -- meshimporter.meshioascii.filename <- ''
 -- Filename for ASCII input mesh not specified. To test PyLith, run an example as discussed in the manual.
 >> {default}::
 -- pyre.inventory(error)
 -- timedependent.problem_defaults.name <- ''
 -- Missing required property 'name' in default options for problem.
pylithapp: configuration error(s)

This indicates that at a very minimum metadata and the finite-element mesh file must be specified in order to run PyLith.

Configuration on a Cluster

If you are installing PyLith on a cluster with a batch system, you can configure Pyre such that the pylith command automatically submits jobs to the batch queue.
Pyre contains support for the LSF, PBS, SGE, and Globus batch systems.
Properly configured, Pyre can handle job submissions automatically, insulating users from the details of the batch system and the site configuration.

See Running in Parallel on a Cluster for more information on how to use PyLith on a cluster with a job scheduling system.

Governing Equations

This chapter presents the solution schemes we use for solving variations of the elasticity equation using the finite-element method.
In all of our derivations, we use the notation described in Mathematical notation.

Table 1 Mathematical notation

	Symbol

	Description

	\(\vec{a}\)

	Vector field a

	\(\mathbf{a}\)

	Second order tensor field a

	\(\vec{u}\)

	Displacement vector field

	\(\vec{v}\)

	Velocity vector field

	\(\vec{{d}}\)

	Fault slip vector field

	\(\vec{f}\)

	Body force vector field

	\(\vec{\tau}\)

	Traction vector field

	\(\mathbf{\sigma}\)

	Stress tensor field

	\(\vec{n}\)

	Normal vector field

	\(\rho\)

	Mass density scalar field

	Derivation of Elasticity Equation

	Finite-Element Formulation with PETSc
	Jacobian

	PETSc TS Notes
	Explicit Time Stepping

	Implicit Time Stepping

	Implicit-Explicit Time Stepping

	Elasticity with Infinitesimal Strain and No Faults
	Quastistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Absorbing Boundary
	Residual Pointwise Function

	Bulk Rheologies for Elasticity
	Elasticity Constitutive Models

	Linear Isotropic Elastic Models

	Linear Viscoelastic Models

	Generalized Maxwell Viscoelastic Models

	Effective Stress Formulation for Viscoelastic Materials

	Power-law Viscoelastic Models

	Elasticity with Infinitesimal Strain and Prescribed Slip on Faults
	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Incompressible Isotropic Elasticity with Infinitesimal Strain (Bathe)
	Residual Pointwise Functions

	Jacobians Pointwise Functions

	Poroelasticity with Infinitesimal Strain and No Faults
	Constitutive Behavior
	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Porosity State Variable
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobians Pointwise Functions

Derivation of Elasticity Equation

For completeness we start our discussion of the governing equations with a derivation of the elasticity equation.
Consider domain \(\Omega\) bounded by boundary \(\Gamma\).
Applying a Lagrangian description of the conservation of momentum gives

(1)\[\frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega=\int_{\Omega}\vec{f}(\vec{x},t)\, d\ + \int_{\Gamma}\vec{\tau}(\vec{x},t)\, d\Gamma.\]

The traction vector field is related to the stress tensor through

(2)\[\begin{equation}
\vec{\tau}(\vec{x},t) = \boldsymbol{\sigma}(\vec{u}) \cdot \vec{n},
\end{equation}\]

where \(\vec{n}\) is the outward normal vector to \(\Gamma\).
Substituting into equation (1) yields

(3)\[\begin{equation}
\frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega = \int_{\Omega}\vec{f}(\vec{x},t)\, d\Omega+\int_{\Gamma}\boldsymbol{\sigma}(\vec{u})\cdot\vec{n}\, d\Gamma.
\end{equation}\]

Applying the divergence theorem,

(4)\[\begin{equation}
\int_{\Omega}\boldsymbol{\nabla}\cdot\vec{a}\: d\Omega=\int_{\Gamma}\vec{a}\cdot\vec{n}\: d\Gamma,
\end{equation}\]

to the boundary integral results in

(5)\[\begin{equation}
\frac{\partial}{\partial t}\int_{\Omega}\rho(\vec{x})\frac{\partial\vec{u}}{\partial t}\, d\Omega=\int_{\Omega}\vec{f}(\vec{x},t)\, d\Omega+\int_{\Omega}\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}(\vec{u})\, d\Omega,
\end{equation}\]

which we can rewrite as

(6)\[\begin{equation}
\int_{\Omega}\left(\rho(\vec{x})\frac{\partial^{2}\vec{u}}{\partial t^{2}}-\vec{f}(\vec{x},t)-\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}(\vec{u})\right)\, d\Omega=\vec{0}.
\end{equation}\]

Because the domain \(\Omega\) is arbitrary, the integrand must be the zero vector at every location in the domain, so that we end up with

(7)\[\begin{gather}
\rho(\vec{x})\frac{\partial^{2}\vec{u}}{\partial t^{2}}-\vec{f}(\vec{x},t)-\boldsymbol{\nabla}\cdot\boldsymbol{\sigma}=\vec{0}\text{ in }\Omega,\\
\boldsymbol{\sigma}(\vec{u})\cdot\vec{n}=\vec{\tau}(\vec{x},t)\text{ on }\Gamma_{\tau}\text{,}\\
\vec{u}=\vec{u}_0(\vec{x},t)\text{ on }\Gamma_{u},\text{ and}\\
\vec{u}^{+}-\vec{u}^{-}=\vec{d}\text{ on }\Gamma_{f}.
\end{gather}\]

We specify tractions, \(\vec{\tau}\), on boundary \(\Gamma_{f}\), displacements, \(\vec{u^{o}}\), on boundary \(\Gamma_{u}\), and slip, \(\vec{d}\), on fault interface \(\Gamma_{f}\).

Finite-Element Formulation with PETSc

Within the PETSc solver framework, we want to solve a system of partial differential equations in which the weak form can be expressed as \(F(t,s,\dot{s}) = G(t,s)\), \(s(t_0) = s_0\), where \(F\) and \(G\) are vector functions, \(t\) is time, and \(s\) is the solution vector.

Using the finite-element method[1] we manipulate the weak form of the system of equations involving a vector field \(\vec{u}\) into integrals over the domain \(\Omega\) matching the form,

(8)\[\int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{f}_0(t,s,\dot{s}) + \nabla {\vec{\psi}_\mathit{trial}^{u}} : \boldsymbol{f}_1(t,s,\dot{s}) \, d\Omega = \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{g}_0(t,s) + \nabla {\vec{\psi}_\mathit{trial}^{u}} : \boldsymbol{g}_1(t,s) \, d\Omega,\]

where \({\vec{\psi}_\mathit{trial}^{u}}\) is the trial function for field \(\vec{u}\), \(\vec{f}_0\) and \(\vec{g}_0\) are vectors, and \(\boldsymbol{f}_1\) and \(\boldsymbol{g}_1\) are tensors.
With multiple partial differential equations we will have multiple equations of this form, and the solution vector \(s\), which we usually write as \(\vec{s}\), will be composed of several different fields, such as displacement \(\vec{u}\), velocity \(\vec{v}\), pressure \(p\), and temperature \(T\).
Boundary conditions will also contribute similar terms with integrals over the corresponding boundaries.

For consistency with the PETSc time stepping formulation, we call \(G(t,s)\) the RHS function and call \(F(t,s,\dot{s})\) the LHS (or I) function.
Likewise, the Jacobian of \(G(t,s)\) is the RHS Jacobian and the Jacobian of \(F(t,s,\dot{s})\) is the LHS Jacobian.
Using a finite-element discretization we break up the domain and boundary integrals into sums over the cells and boundary faces/edges, respectively.
Using numerical quadrature those sums in turn involve sums over the values at the quadrature points with appropriate weights.
Thus, computation of the RHS function boils down to pointwise evaluation of \(\vec{g}_0(t,s)\) and \(\boldsymbol{g}_1(t,s)\), and computation of the LHS function boils down to pointwise evaluation of \(\vec{f}_0(t,s,\dot{s})\) and \(\boldsymbol{f}_1(t,s,\dot{s})\).

Jacobian

The LHS Jacobian \(J_F = \frac{\partial F}{\partial s} + s_\mathit{tshift} \frac{\partial F}{\partial \dot{s}}\) and the RHS Jacobian \(J_G = \frac{\partial G}{\partial s}\), where \(s_\mathit{tshift}\) arises from the temporal discretization. We put the Jacobians for each equation into the form:

(9)\[\begin{split}\begin{aligned}
 J_F &= \int_\Omega {\vec{\psi}_\mathit{trial}^{}}\cdot \boldsymbol{J}_{f0}(t,s,\dot{s}) \cdot {\vec{\psi}_\mathit{basis}^{}} + {\vec{\psi}_\mathit{trial}^{}}\cdot \boldsymbol{J}_{f1}(t,s,\dot{s}) : \nabla {\vec{\psi}_\mathit{basis}^{}} + \nabla {\vec{\psi}_\mathit{trial}^{}}: \boldsymbol{J}_{f2}(t,s,\dot{s}) \cdot {\vec{\psi}_\mathit{basis}^{}} + \nabla {\vec{\psi}_\mathit{trial}^{}}: \boldsymbol{J}_{f3}(t,s,\dot{s}) : \nabla {\vec{\psi}_\mathit{basis}^{}}\, d\Omega \\
%
 J_G &= \int_\Omega {\vec{\psi}_\mathit{trial}^{}}\cdot \boldsymbol{J}_{g0}(t,s) \cdot {\vec{\psi}_\mathit{basis}^{}} + {\vec{\psi}_\mathit{trial}^{}}\cdot \boldsymbol{J}_{g1}(t,s) : \nabla {\vec{\psi}_\mathit{basis}^{}} + \nabla {\vec{\psi}_\mathit{trial}^{}}: \boldsymbol{J}_{g2}(t,s) \cdot {\vec{\psi}_\mathit{basis}^{}} + \nabla {\vec{\psi}_\mathit{trial}^{}}: \boldsymbol{J}_{g3}(t,s) : \nabla {\vec{\psi}_\mathit{basis}^{}}\, d\Omega,
\end{aligned}\end{split}\]

where \({\vec{\psi}_\mathit{basis}^{}}\) is a basis function.
Expressed in index notation the Jacobian coupling solution field components \(s_i\) and \(s_j\) is

(10)\[J^{s_is_j} = \int_\Omega {\psi_\mathit{trial}^{}}_i J_0^{s_is_j} {\psi_\mathit{basis}^{}}_j + {\psi_\mathit{trial}^{}}_i
J_1^{s_js_jl}
{\psi_\mathit{basis}^{}}_{j,l} + {\psi_\mathit{trial}^{}}_{i,k} J_2^{s_is_jk} {\psi_\mathit{basis}^{}}_j + {\psi_\mathit{trial}^{}}_{i,k}
J_3^{s_is_jkl}
{\psi_\mathit{basis}^{}}_{j,l} \, d\Omega,\]

It is clear that the tensors \(J_0\), \(J_1\), \(J_2\), and \(J_3\) have various sizes: \(J_0(n_i,n_j)\), \(J_1(n_i,n_j,d)\), \(J_2(n_i,n_j,d)\), \(J_3(n_i,n_j,d,d)\), where \(n_i\) is the number of components in solution field \(s_i\), \(n_j\) is the number of components in solution field \(s_j\), and \(d\) is the spatial dimension.
Alternatively, expressed in discrete form, the Jacobian for the coupling between solution fields \(s_i\) and \(s_j\) is

(11)\[J^{s_is_j} = J_{0}^{s_is_j} + J_{1}^{s_is_j} B + B^T J_{2}^{s_is_j} + B^T J_{3}^{s_is_j} B,\]

where \(B\) is a matrix of the derivatives of the basis functions and \(B^T\) is a matrix of the derivatives of the trial functions.

Important

See https://www.mcs.anl.gov/petsc/petsc-master/docs/manualpages/FE/PetscFEIntegrateJacobian.html for the ordering of indices in the Jacobian pointwise functions.

PETSc TS Notes

Explicit Time Stepping

Explicit time stepping with the PETSc TS requires \(F(t,s,\dot{s}) = \dot{s}\).

	We do not specify the functions \(\vec{f}_0(t,s,\dot{s})\) and \(\boldsymbol{f}_1(t,s,\dot{s})\) because the PETSc TS will assume \(F(t,s,\dot{s}) = \dot{s}\) if no LHS (or I) function is given.

	The PETSc TS will verify that the LHS (or I) function is null.

	We also do not specify \(J_F\) or \(J_G\).

	This leaves us with only needing to specify \(\vec{g}_0(t,s)\) and \(\boldsymbol{g}_1(t,s)\).

For explicit time stepping with the PETSc TS, we need \(F(t,s,\dot{s}) = \dot{s}\).
Using a finite-element formulation for elastodynamics, \(F(t,s,\dot{s})\) generally involves integrals of the inertia over the domain.
It is tempting to simply move these terms to the RHS, but that introduces inertial terms into the boundary conditions, which makes them less intuitive.
Instead, we transform our equation into the form \(\dot{s} = G^*(t,s)\) where \(G^*(t,s) = M^{-1} G(t,s)\).
We take \(M\) to be a lumped (diagonal) matrix, so that \(M^{-1}\) is trivial to compute.
In computing the RHS function, \(G^*(t,s)\), we compute \(G(t,s)\), then compute \(M\) and \(M^{-1}\), and then \(M^{-1}G(t,s)\).
For the elasticity equation with inertial terms, \(M\) contains the mass matrix.

Implicit Time Stepping

The LHS (or I) function is associated with implicit time-stepping.
When using implicit time-stepping, we place all of the terms on the LHS.
Even though placing all of the terms on the LHS sometimes requires different pointwise functions for implicit and explicit time stepping, it minimizes the number of pointwise functions needed for implicit time stepping.
If no RHS function is given, then the PETSc TS assumes \(G(t,s) = 0\), so we only need to specify \(F(t,s,\dot{s})\) and \(J_f\).

Implicit-Explicit Time Stepping

For implicit-explicit time stepping algorithms, the equations integrated with explicit time stepping have \(\dot{s}\) as the LHS function, and the equations integrated with implicit time stepping have 0 as the RHS function.

[1]
Some resources for learning about the finite-element method include Zienkiewicz and Taylor [2000], Taylor [2003], Farrell [2021], and Cotter and Ham [2023].

Elasticity with Infinitesimal Strain and No Faults

We begin with the elasticity equation including the inertial term,

(12)\[\rho \frac{\partial^2\vec{u}}{\partial t^2} - \vec{f}(\vec{x},t) - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} (\vec{u}) = \vec{0} \text{ in }\Omega,\]

(13)\[\boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on }\Gamma_\tau,\]

(14)\[\vec{u} = \vec{u}_0(\vec{x},t) \text{ on }\Gamma_u,\]

where \(\vec{u}\) is the displacement vector, \(\rho\) is the mass density, \(\vec{f}\) is the body force vector, \(\boldsymbol{\sigma}\) is the Cauchy stress tensor, \(\vec{x}\) is the spatial coordinate, and \(t\) is time. We specify tractions \(\vec{\tau}\) on boundary \(\Gamma_\tau\), and displacements \(\vec{u}_0\) on boundary \(\Gamma_u\).
Because both \(\vec{\tau}\) and \(\vec{u}\) are vector quantities, there can be some spatial overlap of boundaries \(\Gamma_\tau\) and \(\Gamma_u\); however, a degree of freedom at any location cannot be associated with both prescribed displacements (Dirichlet) and traction (Neumann) boundary conditions simultaneously.

Table 2 Mathematical notation for elasticity equation with infinitesimal strain.

	Category

	Symbol

	Description

	Unknowns

	\(\vec{u}\)

	Displacement field

	

	\(\vec{v}\)

	Velocity field

	Derived quantities

	\(\boldsymbol{\sigma}\)

	Cauchy stress tensor

	

	\(\boldsymbol{\epsilon}\)

	Cauchy strain tensor

	Common constitutive parameters

	\(\rho\)

	Density

	

	\(\mu\)

	Shear modulus

	

	\(K\)

	Bulk modulus

	Source terms

	\(\vec{f}\)

	Body force per unit volume, for example \(\rho \vec{g}\)

	Quastistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Absorbing Boundary
	Residual Pointwise Function

	Bulk Rheologies for Elasticity
	Elasticity Constitutive Models

	Linear Isotropic Elastic Models

	Linear Viscoelastic Models

	Generalized Maxwell Viscoelastic Models

	Effective Stress Formulation for Viscoelastic Materials

	Power-law Viscoelastic Models

Quastistatic

If we neglect the inertial term (\(\rho \frac{\partial \vec{v}}{\partial t} \approx \vec{0}\)), then time dependence only arises from history-dependent constitutive equations and boundary conditions.
Our solution vector is the displacement vector and the elasticity equation reduces to

(15)\[\begin{split}\begin{gathered}
\vec{f}(\vec{x},t) + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0} \text{ in }\Omega, \\
%
\boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on }\Gamma_\tau, \\
%
\vec{u} = \vec{u}_0(\vec{x},t) \text{ on }\Gamma_u.
\end{gathered}\end{split}\]

Because we will use implicit time stepping, we place all of the terms in the elasticity equation on the LHS.
We create the weak form by taking the dot product with the trial function \({\vec{\psi}_\mathit{trial}^{u}}\) and integrating over the domain:

(16)\[\begin{equation}
\int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \left(\vec{f}(t) + \boldsymbol{\nabla}\cdot \boldsymbol{\sigma} (\vec{u}) \right) \, d\Omega = 0.
\end{equation}\]

Using the divergence theorem and incorporating the Neumann boundary conditions, we have

(17)\[\begin{equation}
\int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{f}(\vec{x},t) + \nabla {\vec{\psi}_\mathit{trial}^{v}} : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma = 0
\end{equation}\]

Residual Pointwise Functions

Identifying \(F(t,s,\dot{s})\) and \(G(t,s)\), we have

(18)\[\begin{align}
% Fu
F^u(t,s,\dot{s}) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot{\color{blue}\underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} + \nabla {\vec{\psi}_\mathit{trial}^{u}} :{\color{blue} \underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u})}_{\color{blue}{\boldsymbol{f^u_1}}}} \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue} \underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} \, d\Gamma, \\
% Gu
G^u(t,s) &= 0
\end{align}\]

Note that we have multiple \(\vec{f}_0\) functions, each associated with a trial function and an integral over a different domain or boundary.
Each material and boundary condition (except Dirichlet) contribute pointwise functions.
The integral over the domain \(\Omega\) is subdivided into integrals over the materials and the integral over the boundary \(\Gamma_\tau\) is subdivided into integrals over the Neumann boundaries.
Each bulk constitutive model provides a different pointwise function for the stress tensor \(\boldsymbol{\sigma}(\vec{u})\).
With \(G=0\) it is clear that we have a formulation that will use implicit time stepping algorithms.

Jacobian Pointwise Functions

We only have a Jacobian for the LHS:

(19)\[\begin{aligned}
J_F^{uu} &= \frac{\partial F^u}{\partial u} = \int_\Omega \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial u}(-\boldsymbol{\sigma}) \, d\Omega = \int_\Omega \nabla {\vec{\psi}_\mathit{trial}^{u}} : -\boldsymbol{C} : \frac{1}{2}(\nabla + \nabla^T){\vec{\psi}_\mathit{basis}^{u}}\, d\Omega = \int_\Omega {\psi_\mathit{trial}^{u}}_{i,k} \, {\color{blue} \underbrace{\color{black}\left(-C_{ikjl} \right)}_{\color{blue}{J_{f3}^{uu}}}} \, {\psi_\mathit{basis}^{u}}_{j,l}\, d\Omega.
\end{aligned}\]

Dynamic

For compatibility with PETSc TS algorithms, we want to turn the second order equation (12) into two first order
equations.
We introduce the velocity as a unknown, \(\vec{v}=\frac{\partial u}{\partial t}\), which leads to

(20)\[\begin{equation}
\begin{aligned}
% Displacement-velocity
\frac{\partial \vec{u}}{\partial t} &= \vec{v} \text{ in } \Omega, \\
% Elasticity
\rho(\vec{x}) \frac{\partial\vec{v}}{\partial t} &= \vec{f}(\vec{x},t) + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) \text{ in } \Omega, \\
% Neumann
\boldsymbol{\sigma} \cdot \vec{n} &= \vec{\tau}(\vec{x},t) \text{ on } \Gamma_\tau, \\
% Dirichlet
\vec{u} &= \vec{u}_0(\vec{x},t) \text{ on } \Gamma_u.
\end{aligned}
\end{equation}\]

We create the weak form by taking the dot product with the trial function \({\vec{\psi}_\mathit{trial}^{u}}\) or \({\vec{\psi}_\mathit{trial}^{v}}\) and integrating over the domain:

(21)\[\begin{gather}
% Displacement-velocity
\int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \frac{\partial \vec{u}}{\partial t} \, d\Omega = \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{v} \, d\Omega, \\
% Elasticity
\int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \left(\vec{f}(t) + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} (\vec{u}) \right) \, d\Omega.
\end{gather}\]

Using the divergence theorem and incorporating the Neumann boundaries, we can rewrite the second equation as

(22)\[\begin{equation}
\int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega= \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \vec{f}(\vec{x},t) + \nabla {\vec{\psi}_\mathit{trial}^{v}} : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma.
\end{equation}\]

For explicit time stepping, we want \(F(t,s,\dot{s})=\dot{s}\), so we solve an augmented system in which we multiply the RHS residual function by the inversion of the lumped LHS Jacobian,

(23)\[\begin{gather}
F^*(t,s,\dot{s}) = G^*(t,s) \text{, where} \\
F^*(t,s,\dot{s}) = \dot{s} \text{ and} \\
G^*(t,s) = J_F^{-1} G(t,s).
\end{gather}\]

With the augmented system, we have

(24)\[\begin{gather}
% Displacement-velocity
\frac{\partial \vec{u}}{\partial t} = M_u^{-1} \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{v} \, d\Omega, \\
% Elasticity
\frac{\partial \vec{v}}{\partial t} = M_v^{-1} \left(\int_\Omega \vec{\psi}_\mathit{trial}^{v} \cdot \vec{f}(\vec{x},t) + \nabla \vec{\psi}_\mathit{trial}^{v} : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega + \int_{\Gamma_\tau} \vec{\psi}_\mathit{trial}^{v} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma \right), \\
% Mu
M_u = \mathit{Lump}\left(\int_\Omega {\psi_\mathit{trial}^{u}}_i \delta_{ij} {\psi_\mathit{basis}^{u}}_j \, d\Omega \right), \\
% Mv
M_v = \mathit{Lump}\left(\int_\Omega {\psi_\mathit{trial}^{v}}_i \rho(\vec{x}) \delta_{ij} {\psi_\mathit{basis}^{v}}_j \, d\Omega \right).
\end{gather}\]

Residual Pointwise Functions

With explicit time stepping the PETSc TS assumes the LHS is \(\dot{s}\), so we only need the RHS residual functions:

(25)\[\begin{equation}
\begin{aligned}
% Gu
G^u(t,s) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue}\underbrace{\color{black}\vec{v}}_{\color{blue}{\vec{g}^u_0}}} \, d\Omega, \\
% Gv
G^v(t,s) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot {\color{blue}\underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} + \nabla {\vec{\psi}_\mathit{trial}^{v}} : {\color{blue}\underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u})}_{\color{blue}{\boldsymbol{g^v_1}}}} \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot{\color{blue}\underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} \, d\Gamma,
\end{aligned}
\end{equation}\]

In the second equation these are the same pointwise functions as in the quasistatic case, only now they are on the RHS instead of the LHS.

Jacobian Pointwise Functions

These are the pointwise functions associated with \(M_u\) and \(M_v\) for computing the lumped LHS Jacobian.
We premultiply the RHS residual function by the inverse of the lumped LHS Jacobian while \(s_\mathit{tshift}\) remains on the LHS with \(\dot{s}\). As a result, we use LHS Jacobian pointwise functions, but set \(s_\mathit{tshift}=1\).
The LHS Jacobians are:

(26)\[\begin{equation}
\begin{aligned}
% J_F uu
M_u = J_F^{uu} &= \frac{\partial F^u}{\partial u} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{u}} = \int_\Omega {\psi_\mathit{trial}^{u}}_i{\color{blue}\underbrace{\color{black}s_\mathit{tshift} \delta_{ij}}_{\color{blue}{J^{uu}_{f0}}}} {\psi_\mathit{basis}^{u}}_j \, d\Omega, \\
% J_F vv
M_v = J_F^{vv} &= \frac{\partial F^v}{\partial v} + s_\mathit{tshift} \frac{\partial F^v}{\partial \dot{v}} = \int_\Omega {\psi_\mathit{trial}^{v}}_i {\color{blue} \underbrace{\color{black}\rho(\vec{x}) s_\mathit{tshift} \delta_{ij}}_{\color{blue}{J ^{vv}_{f0}}}} {\psi_\mathit{basis}^{v}}_j \, d\Omega
\end{aligned}
\end{equation}\]

Absorbing Boundary

The absorbing boundary is a special case of a Neumann boundary condition, in which the traction depends on the deformation. Consider a plane wave propagating at velocity \(c\).
We can write the displacement field as

(27)\[\begin{equation}
\vec{u}(\vec{x},t) = \vec{u^t}(t-\frac{\vec{x}}{c}),
\end{equation}\]

where \(\vec{x}\) is position, \(t\) is time, and \(\vec{u^t}\) is the shape of the propagating wave.
For an absorbing boundary we want the traction on the boundary to be equal to the traction associated with the wave propagating out of the domain.
Starting with the expression for the traction on a boundary, \(T_{i}=\sigma_{ij}n_{j},\) and using the local coordinate system for the boundary \(s_{h}s_{v}n,\) where \(\vec{n}\) is the direction normal to the boundary, \(\vec{s}_h\) is the horizontal direction tangent to the boundary, and \(\vec{s}_v\) is the vertical direction tangent to the boundary, the tractions on the boundary are

(28)\[\begin{align}
\tau_{s_h} &= \sigma_{s_{h}n}\\
\tau_{s_v} &= \sigma_{s_{v}n}\\
\tau_{n} &=\sigma_{nn}.
\end{align}\]

In the case of a horizontal boundary, we define a reference directions in order to assign unique tangential directions.
For a linear elastic isotropic material, \(\sigma_{ij}=\lambda\epsilon_{kk}\delta_{ij}+2\mu\epsilon_{ij},\) and we can write the tractions as

(29)\[\begin{align}
\tau_{s_{h}} &= 2 \mu \epsilon_{s_{h}n}\\
\tau_{s_{v}} &= 2 \mu \epsilon_{s_{v}n}\\
\tau_{n} &= (\lambda+2\mu) \epsilon_{nn} + \lambda (\epsilon_{s_{h}s_{h}} + \epsilon_{s_{v}s_{v}}).
\end{align}\]

For infinitesimal strains, \(\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})\) and we have

(30)\[\begin{align}
\epsilon_{s_{h}n} &= \frac{1}{2} (u_{s_{h},n} + u_{n,s_{h}})\\
\epsilon_{s_{v}n} &= \frac{1}{2} (u_{s_{v},n} + u_{n,s_{v}})\\
\epsilon_{nn} &= u_{n,n}.
\end{align}\]

For our propagating plane wave, we recognize that

(31)\[\begin{equation}
\frac{\partial\vec{u^t}(t-\frac{\vec{x}}{c})}{\partial x_{i}} = -\frac{1}{c} \frac{\partial\vec{u^{t}}(t-\frac{\vec{x}}{c})}{\partial t} = -\frac{1}{c} \vec{v}^t(t-\frac{\vec{x}}{c}),
\end{equation}\]

so that our expressions for the tractions become

(32)\[\begin{gather}
\tau_{s_{h}} = -\frac{\mu}{c} \left(v_{s_{h}}^{t}(t-\frac{\vec{x}}{c})+v_n^t(t-\frac{\vec{x}}{c})\right),\\
\tau_{s_{v}} = -\frac{\mu}{c} \left(v_{s_{v}}^{t}(t-\frac{\vec{x}}{c})+v_{n}^{t}(t-\frac{\vec{x}}{c})\right).
\end{gather}\]

For the normal traction consider a dilatational wave propagating normal to the boundary at speed \(v_p\); in this case \(u_{s_{h}}=u_{s_{v}}=0\) and \(c=v_{p}\).
For the shear tractions, consider a shear wave propagating normal to the boundary at speed \(v_s\); we can decompose this into one case where \(u_{n}=u_{s_{v}}=0\) and another case where \(u_{n}=u_{s_{h}}=0\), with \(c=v_{s}\) in both cases.
We also recognize that \(\mu=\rho v_{s}^{2}\) and \(\lambda+2\mu=\rho v_{p}^{2}\).
This leads to the following expressions for the tractions:

(33)\[\begin{gather}
\tau_{s_{h}}=-\rho v_{s} v_{s_{h}}^{t}(t-\frac{\vec{x}}{c})\\
\tau_{s_{v}}=-\rho v_{s} v_{v}^{t}(t-\frac{\vec{x}}{c})\\
\tau_{n}=-\rho v_{p} v_{n}^{t}(t-\frac{\vec{x}}{c})
\end{gather}\]

Substituting the tractions into the weak form for the Neumann boundary, we have

(34)\[\begin{equation}
\int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma = \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot \left(-\rho c_i v_i(t) \right) \, d\Gamma,
\end{equation}\]

where \(c_i\) equals \(v_p\) for the normal traction and \(v_s\) for the shear tractions.

Residual Pointwise Function

(35)\[\begin{equation}
G^v(t,s) = \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{v}} \cdot{\color{blue}\underbrace{\color{black} \left(-\rho c_i v_i(t) \right) }_{\color{blue}{\vec{g}^v_0}}} \, d\Gamma,
\end{equation}\]

Bulk Rheologies for Elasticity

In this section we describe the mathematic formulations of the bulk rheologies for elasticity.
The bulk rheologies include

	Isotropic linear elasticity,

	Isotropic linear (Maxwell) viscoelasticity,

	Isotropic linear generalized Maxwell viscoelasticity, and

	Isotropic power-law viscoelasticity.

For the viscoelastic rheologies, we assume the viscous deformation is incompressible; consequently, we separate the stress and strain fields into deviatoric and volumetric components.

Table 3 Mathematical notation for viscoelastic formulations.

	Variable

	Symbol

	Definition

	Mean stress

	\(\mathit{P}\)

	\(\frac{\mathop{\mathrm{Tr}}(\boldsymbol{\sigma})}{3}\)

	Mean strain

	\(\mathit{\theta}\)

	\(\frac{\mathop{\mathrm{Tr}}(\boldsymbol{\epsilon})}{3}\)

	Deviatoric stress

	\(\boldsymbol{\sigma}^{\mathit{dev}}\)

	\(\boldsymbol{\sigma} - \mathit{P}\mathit{\boldsymbol{I}}\)

	Deviatoric strain

	\(\boldsymbol{\epsilon}^{\mathit{dev}}\)

	\(\boldsymbol{\epsilon} - \mathit{\theta}\mathit{\boldsymbol{I}}\)

	2nd deviatoric stress invariant

	\(\mathit{J}_{2}^{\prime}\)

	\(\frac{1}{2}\boldsymbol{\sigma}^{dev}:\boldsymbol{\sigma}^{dev}\)

	2nd deviatoric strain invariant

	\(\mathit{L}_{2}^{\prime}\)

	\(\frac{1}{2}\boldsymbol{\epsilon}^{dev}:\boldsymbol{\epsilon}^{dev}\)

	Elasticity Constitutive Models

	Linear Isotropic Elastic Models

	Linear Viscoelastic Models

	Generalized Maxwell Viscoelastic Models

	Effective Stress Formulation for Viscoelastic Materials

	Power-law Viscoelastic Models

Elasticity Constitutive Models

The Jacobian for the elasticity equation (19) is

(36)\[J_{f3}^{uu} = \frac{\partial F^{u_{i}}}{\partial u_{j}}.\]

In computing the derivative, we consider the linearized form:

(37)\[\begin{split}\begin{gathered}
\sigma_{ik} = C_{ikjl} \epsilon_{jl} \\
\sigma_{ik} = C_{ikjl} \frac{1}{2}\left(u_{j,l} + u_{l,j}\right) \\
\sigma_{ik} = \frac{1}{2}\left(C_{ikjl} + C_{iklj}\right)u_{j,l} \\
\sigma_{ik} = C_{ikjl} u_{j,l}. \\
\end{gathered}\end{split}\]

In computing the Jacobian, we take the derivative of the stress tensor with respect to the displacement field,

(38)\[\frac{\partial}{\partial u_{j}}\sigma_{ik} = C_{ikjl} {\psi_\mathit{basis^{}}^{u}}_{j,l},\]

so we have

(39)\[J_{f3}^{uu}(i,j,k,l) = -C_{ikjl}.\]

For many elasticity constitutive models we prefer to separate the stress into the mean stress and deviatoric stress:

(40)\[\begin{split}\begin{gathered}
\boldsymbol{\sigma} = \sigma^{mean} \boldsymbol{I} + \boldsymbol{\sigma}^{dev}, \text{where} \\
\sigma^{mean} = \frac{1}{3}\mathrm{Tr}(\boldsymbol{\sigma}) = \frac{1}{3}\left(\sigma_{11} + \sigma_{22} + \sigma_{33}\right). \\
\end{gathered}\end{split}\]

Sometimes it is convenient to use pressure (positive pressure corresponds to compression) instead of the mean stress:

(41)\[\begin{split}\begin{gathered}
\boldsymbol{\sigma} = -p \boldsymbol{I} + \boldsymbol{\sigma}^{dev}, \text{where} \\
p = -\frac{1}{3}\mathrm{Tr}(\boldsymbol{\sigma}). \\
\end{gathered}\end{split}\]

The Jacobian with respect to the deviatoric stress is

(42)\[\begin{split}\begin{gathered}
\frac{\partial \sigma_{ik}^{dev}}{\partial u_{j}} = \frac{\partial}{\partial u_{j}}\left(\sigma_{ik} - \frac{1}{3}\sigma_{mm}\delta_{ik}\right) \\
\frac{\partial \sigma_{ik}^{dev}}{\partial u_{j}} = C_{ikjl} {\psi_\mathit{basis^{}}^{u}}_{j,l} - \frac{1}{3}C_{mmjl} \delta_{ik}{\psi_\mathit{basis^{}}^{u}}_{j,l}.
\end{gathered}\end{split}\]

We call these modified elastic constants \(C_{ijkl}^{dev}\), so that we have

(43)\[C_{ikjl}^{dev} = C_{ikjl} - \frac{1}{3}C_{mmjl} \delta_{ik}.\]

Linear Isotropic Elastic Models

We implement isotropic linear elasticity both with and without a reference stress and strain state.
With a linear elastic material we often compute the deformation relative to an unknown initial stress and strain state.
An initial undeformed configuration with zero stress and strain corresponds to reference stress and strain of zero.

Without a reference stress and strain state, we have

(44)\[\sigma_{ij} = \lambda \epsilon_{kk} \delta{ij} + 2 \mu \epsilon_{ij}\]

and with a reference stress and strain state, we have

(45)\[\sigma_{ij} = \sigma_{ij}^{ref} + \lambda\left(\epsilon_{kk} - \epsilon_{kk}^{ref}\right) \delta{ij} + 2 \mu \left(\epsilon_{ij} - \epsilon_{ij}^{ref}\right).\]

The mean stress is

(46)\[\begin{split}\begin{gathered}
\sigma^{mean} = \frac{1}{3} \sigma_{kk}, \\
\sigma^{mean} = \frac{1}{3} \sigma_{kk}^{ref} + K\left(\epsilon_{kk} - \epsilon_{kk}^{ref}\right), \\
\end{gathered}\end{split}\]

where \(K = \lambda + 2 \mu/3\) is the bulk modulus.
If the reference stress and reference strain are both zero, then this reduces to

(47)\[\sigma^{mean} = K \epsilon_{kk}.\]

The deviatoric stress is

\[\begin{split}\begin{gathered}
\sigma_{ij}^{dev} = \sigma_{ij} - \sigma^{mean} \delta_{ij}, \\
\sigma_{ij}^{dev} = \sigma_{ij}^{ref} + \lambda \left(\epsilon_{kk} -
\epsilon_{kk}^{ref}\right) \delta_{ij} + 2 \mu \left(\epsilon_{ij} -
\epsilon_{ij}^{ref}\right) - \left[\frac{1}{3}\sigma_{kk}^{ref} +
\left(\lambda + \frac{2}{3}\mu\right)\left(\epsilon_{kk}-
\epsilon_{kk}^{ref}\right)\right] \delta_{ij}, \\
\sigma_{ij}^{dev} = \sigma_{ij}^{ref} - \frac{1}{3}\sigma_{kk}^{ref}\delta_{ij} + 2 \mu \left(\epsilon_{ij} - \epsilon_{ij}^{ref}\right) - \frac{2}{3} \mu\left(\epsilon_{kk}- \epsilon_{kk}^{ref}\right) \delta_{ij}. \\
\end{gathered}\end{split}\]

For isotropic linear elasticity, all components of \(C_{ikjl}\) are zero except for:

(48)\[\begin{split}\begin{gathered}
C_{1111} = C_{2222} = C_{3333} = \lambda + 2 \mu, \\
C_{1122} = C_{1133} = C_{2233} = \lambda, \\
C_{1212} = C_{2323} = C_{1313} = \mu. \\
\end{gathered}\end{split}\]

The deviatoric elastic constants are:

(49)\[\begin{split}\begin{gathered}
C_{1111}^{dev} = C_{2222}^{dev} = C_{3333}^{dev} = \frac{4}{3} \mu, \\
C_{1122}^{dev} = C_{1133}^{dev} = C_{2233}^{dev} = -\frac{2}{3} \mu, \\
C_{1212}^{dev} = C_{2323}^{dev} = C_{1313}^{dev} = \mu. \\
\end{gathered}\end{split}\]

Linear Viscoelastic Models

Fig. 5 shows schematic representations of the viscoelastic models.
The linear Maxwell model can be represented by a spring in series with a linear dashpot.

[image: Schematic representations of viscoelastic rheologies]
Fig. 5 Schematic representations of viscoelastic bulk rheologies available in PyLith.
Note that the models with linear (Newtonian) and power-law viscous behavior are treated as separate rheologies.

For a one-dimensional model, the response is given by

(50)\[\frac{\mathit{d\epsilon}_{Total}}{\mathit{dt}} = \frac{\mathit{d\epsilon}_{D}}{\mathit{dt}} + \frac{\mathit{d\epsilon}_{S}}{\mathit{dt}} = \frac{\mathit{\sigma}}{\mathit{\eta}} + \frac{1}{\mathit{E}}\frac{\mathit{d\sigma}}{\mathit{dt}},\]

where \(\mathit{\epsilon}_{Total}\) is the total strain, \(\mathit{\epsilon}_{D}\) is the strain in the dashpot, \(\mathit{\epsilon}_{S}\) is the strain in the spring, \(\mathit{\sigma}\) is the stress, \(\mathit{\eta}\) is the viscosity of the dashpot, and \(\mathit{E}\) is the spring constant.
When a Maxwell material is subjected to constant strain, the stresses relax exponentially with time.
When a Maxwell material is subjected to a constant stress, there is an immediate elastic strain, corresponding to the response of the spring, and a viscous strain that increases linearly with time.
Because the strain response is unbounded, the Maxwell model actually represents a fluid.

Another simple model is the Kelvin-Voigt model, which consists of a spring in parallel with a dashpot. In this case, the one-dimensional response is given by

(51)\[\mathit{\sigma}(\mathit{t}) = \mathit{E\epsilon}(\mathit{t}) + \mathit{\eta}\frac{\mathit{d\epsilon}(\mathit{t})}{\mathit{dt}}.\]

As opposed to the Maxwell model, which represents a fluid, the Kelvin-Voigt model represents a solid undergoing reversible, viscoelastic strain.
If the material is subjected to a constant stress, it deforms at a decreasing rate, gradually approaching the strain that would occur for a purely elastic material. When the stress is released, the material gradually relaxes back to its undeformed state.

Generalized Maxwell Viscoelastic Models

The most general form of linear viscoelastic model is the generalized Maxwell model, which can be represented by a spring in parallel with a number of Maxwell models (see Fig. 5).
With this model it is possible to represent a number of simpler viscoelastic models.
For example, a simple Maxwell model corresponds to setting the elastic constants of all springs to zero, with the exception of the spring contained in the first Maxwell model (\(\mathit{\mu}_{1}\)).
Similarly, the Kelvin-Voigt model corresponds to setting the elastic constants \(\mathit{\mu}_{2} = \mathit{\mu}_{3} = 0\), and setting \(\mathit{\mu}_{1} = \infty\) (or a very large number).

TODO

Add more information about using the generalized Maxwell model to implement various viscoelastic models (Burgers material).

We follow formulations similar to those used by [Zienkiewicz and Taylor, 2000] and [Taylor, 2003].
In this formulation, we specify the total shear modulus of the model (\(\mu_{tot}\)) and the bulk modulus (\(K\)).
We then provide the fractional shear modulus for each Maxwell element spring in the model.
It is not necessary to specify the fractional modulus for \(\mu_{0}\), because we can find it by subtracting the sum of the other ratios from 1.
Note that the sum of all these fractions must equal 1.
We use a similar formulation for our linear Maxwell viscoelastic model, but in that case \(\mu_{0}\) is always zero and we only use a single Maxwell model.
The parameters defining the both materials are listed in Table 16.

As for all our viscoelastic models, the volumetric strain is completely elastic, and the viscoelastic deformation may be expressed purely in terms of the deviatoric components:

(52)\[\boldsymbol{\sigma}^{dev} = 2\mu_{tot}\left[\mu_{0}\boldsymbol{\epsilon}^{dev} + \sum_{i=1}^{N}\mu_{i}\boldsymbol{q}^{i} - \boldsymbol{\epsilon}^{refdev}\right] + \boldsymbol{\sigma}^{refdev}; P = 3K(\theta - \theta^{ref}) + P^{ref},\]

where \(K\) is the bulk modulus, \(N\) is the number of Maxwell models, the terms with \(ref\) superscripts refer to reference states, and the variable \(q_{i}\) follows the evolution equations

(53)\[\boldsymbol{\dot{q}}^{i} + \frac{1}{\tau_{i}}\boldsymbol{q}^{i} = \boldsymbol{\dot{\epsilon}}^{dev}.\]

The \(\tau_{i}\) are the relaxation times for each Maxwell model:

(54)\[\tau_{i} = \frac{\eta_{i}}{\mu_{tot}\mu_{i}}.\]

An alternative to the differential equation form above is an integral equation form expressed in terms of the relaxation modulus function.
This function is defined in terms of an idealized experiment in which, at time zero (\(t = 0\)), a specimen is subjected to a constant strain, \(\boldsymbol{\epsilon}^{dev}_{0}\), and the stress response, \(\boldsymbol{\sigma}^{dev}(t)\), is measured. For a linear material we obtain:

(55)\[\boldsymbol{\sigma}(t) = 2\mu(t)(\boldsymbol{\epsilon_{0}^{dev} - \boldsymbol{\epsilon}^{refdev}}) + \boldsymbol{\sigma}^{refdev},\]

where \(\mu(t)\) is the shear relaxation modulus function. Using linearity and superposition for an arbitrary state of strain yields an integral equation:

(56)\[\boldsymbol{\sigma}^{dev}(t) = \intop_{-\infty}^{t}\mu(t - T)\boldsymbol{\dot{\epsilon}}^{dev} dT.\]

Writing the modulus function in Prony series form we obtain

(57)\[\mu(t) = \mu_{tot}\left(\mu_{0} + \sum_{i=1}^{N}\mu_{i}\exp\frac{-t}{\tau_{i}}\right),\]

where

(58)\[\mu_{0} + \sum_{i=1}^{N}\mu_{i} = 1.\]

With the form in (57), the integral equation form is identical to the differential equation form.

If we assume the material is undisturbed until a strain is suddenly applied at time zero, we can divide the integral into

(59)\[\intop_{-\infty}^{t} (\cdot) dT = \intop_{-\infty}^{0^{-}} (\cdot) dT + \intop_{0^{-}}^{0^{+}} (\cdot) dT + \intop_{0^{+}}^{t} (\cdot) dT .\]

The first term is zero, the second term includes a jump term associated with \(\boldsymbol{\epsilon}^{dev}_{0}\) at time zero, and the last term covers the subsequent history of strain.
Applying this separation to (56),

(60)\[\boldsymbol{\sigma}^{dev}(t) = 2\mu(t)(\boldsymbol{\epsilon}^{dev}_{0} - \boldsymbol{\epsilon}^{refdev}) + \boldsymbol{\sigma}^{refdev} + 2\intop_{0}^{t}\mu(t - T) \boldsymbol{\dot{\epsilon}}^{dev}(T) dT,\]

where we have left the sign off of the lower limit on the integral.

Substituting (57) into (60), we obtain

(61)\[\boldsymbol{\sigma}^{dev}(t) = 2\mu_{tot}\left\{ \mu_{0}\boldsymbol{\epsilon}^{dev}(t) + \sum_{i=1}^{N}\left[\mu_{i}\exp\frac{-t}{\tau_{i}}\left(\boldsymbol{\epsilon}_{0}^{dev} + \intop_{0}^{t}\exp\frac{t}{\tau_{i}} \boldsymbol{\dot{\epsilon}}^dev(T) dT\right)\right] - \boldsymbol{\epsilon^{refdev}}\right\} + \boldsymbol{\sigma}^{refdev}.\]

We then split each integral into two ranges: from \(0\) to \(t_{n}\), and from \(t_{n}\) to \(t\), and define each integral as

(62)\[\boldsymbol{i}_{i}^{1}(t) = \intop_{0}^{t}\exp\frac{T}{\tau_{i}}\boldsymbol{\dot{\epsilon}}^{dev}(T) dT.\]

The integral then becomes

(63)\[\boldsymbol{i}_{i}^{1}(t) = \boldsymbol{i}_{i}^{1}(t_{n}) + \intop_{t_{n}}^{t}\exp\frac{T}{\tau_{i}}\boldsymbol{\dot{\epsilon}}^{dev}(T) dT.\]

Including the negative exponential multiplier, we have

(64)\[\boldsymbol{h}_{i}^{1}(t) = \exp\frac{-t}{\tau_{i}}\boldsymbol{i}_{i}^{1}.\]

Then

(65)\[\boldsymbol{h}_{i}^{1}(t) = \exp\frac{-\Delta t}{\tau_{i}}\boldsymbol{h}_{i}^{1}(t_{n}) + \Delta \boldsymbol{h}_{i}.\]

where

(66)\[\Delta \boldsymbol{h}_{i} = \exp\frac{-t}{\tau_{i}}\intop_{t_{n}}^{t}\exp\frac{T}{\tau_{i}}\boldsymbol{\dot{\epsilon}}^{dev}(T) dT.\]

Approximating the strain rate as constant over each time step, the solution may be found as

(67)\[\Delta \boldsymbol{h}_{i} = \frac{\tau_{i}}{\Delta t}\left(1 - \exp\frac{-\Delta t}{\tau_{i}}\right)\left(\boldsymbol{\epsilon}^{dev} - \boldsymbol{\epsilon}_{n}^{dev}\right) = \Delta h_{i}\left(\boldsymbol{\epsilon}^{dev} - \boldsymbol{\epsilon}_{n}^{dev}\right).\]

The approximation is singular for zero time steps, but a series expansion may be used for small time-step sizes:

(68)\[\Delta h_{i}\approx1-\frac{1}{2}\left(\frac{\Delta t}{\tau_{i}}\right)+\frac{1}{3!}\left(\frac{\Delta t}{\tau_{i}}\right)^{2}-\frac{1}{4!}\left(\frac{\Delta t}{\tau_{i}}\right)^{3}+\cdots\,.\]

This converges with only a few terms.
With this formulation, the constitutive relation now has the simple form:

(69)\[\boldsymbol{\sigma}^{dev}(t) = 2\mu_{tot}\left(\mu_{0}\boldsymbol{\epsilon}^{dev}(t) + \sum_{i=1}^{N}\mu_{i}\boldsymbol{h}_{i}^{1}(t) - \boldsymbol{\epsilon^{refdev}}\right) + \boldsymbol{\sigma}^{refdev}.\]

We need to compute the tangent constitutive matrix when forming the Jacobian matrix.
In addition to the volumetric contribution to the tangent constitutive matrix, we require the deviatoric part:

(70)\[\frac{\partial\sigma_{ij}^{dev}}{\partial\epsilon_{kl}} = \frac{\partial\sigma_{ij}^{dev}}{\partial\epsilon_{mn}^{dev}}\frac{\partial\epsilon_{mn}^{dev}}{\partial\epsilon_{kl}},\]

where the second derivative on the right may be easily deduced from the definition of deviatoric strain in Mathematical notation for viscoelastic formulations.. The other derivative is given by

(71)\[\frac{\partial\sigma_{ij}^{dev}}{\partial\epsilon_{mn}^{dev}} = 2\mu_{tot} \left[\mu_{0}\delta_{im}\delta_{jn} + \sum_{l=1}^{N}\mu_{l}\frac{\partial h_{lij}^{1}}{\partial \epsilon_{mn}^{dev}}\right].\]

From (65) and (67), the derivative inside the brackets is

(72)\[\frac{\partial h_{lij}^{1}}{\partial\epsilon_{mn}^{dev}} = \Delta h_{l}(\Delta t)\delta_{im}\delta_{jn}.\]

The complete deviatoric tangent relation is then

(73)\[\frac{\partial\sigma_{ij}^{dev}}{\partial\epsilon_{mn}} = 2\mu_{tot} \left[\mu_{0} + \sum_{l=1}^{N}\mu_{l}\Delta h_{l}(\Delta t)\right]\frac{\partial \epsilon_{ij}^{dev}}{\partial \epsilon_{mn}}.\]

We use this formulation for both our Maxwell and generalized Maxwell viscoelastic models.
For the Maxwell model, \(\mu_{0} = 0\) and \(N = 1\).
For the generalized Maxwell model, \(N = 3\).
The stable time step is equal to 1/5 of the minimum relaxation time for all of the Maxwell models (54).

Effective Stress Formulation for Viscoelastic Materials

An alternative technique is used for power-law viscoelastic materials, as well as for Drucker-Prager elasto-plastic materials.
This approach, known as the effective stress function formulation [Kojic and Bathe, 1987] is more suitable for such nonlinear behavior, as it simplifies the equations that must be solved.
As for our linear viscoelastic models, the viscous volumetric strains are zero (incompressible flow), and we separate the general stress-strain relationship at time \(t + \Delta t\) into deviatoric and volumetric parts:

(74)\[\begin{split}\begin{gathered}
\boldsymbol{\sigma}^{dev}(t + \Delta t) = 2\mu \left[\boldsymbol{\epsilon}^{dev}(t + \Delta t) - \boldsymbol{\epsilon}^{creepdev}(t + \Delta t) - \boldsymbol{\epsilon}^{refdev}\right] + \boldsymbol{\sigma}^{refdev} \\
\boldsymbol{\sigma}^{dev}(t + \Delta t) = \frac{1}{a_{E}} \left[\boldsymbol{\epsilon}^{dev}(t + \Delta t) - \boldsymbol{\epsilon}^{creepdev}(t + \Delta t) - \boldsymbol{\epsilon}^{refdev}\right] + \boldsymbol{\sigma}^{refdev} \\
P(t + \Delta t) = 3K\left[\theta(t + \Delta t) - \theta^{ref}\right] + P^{ref} = \frac{1}{a_{m}}\left[\theta(t + \Delta t) - \theta^{ref}\right] + P^{ref}, \\
\end{gathered}\end{split}\]

where \(\boldsymbol{\epsilon}^{dev}(t + \Delta t)\) is the total deviatoric strain, \(\boldsymbol{\epsilon}^{creepdev}(t + \Delta t)\) is the total viscous strain, \(\boldsymbol{\epsilon}^{refdev}\) is the reference deviatoric strain, \(P(t + \Delta t)\) is the total pressure, \(\theta (t + \Delta t)\) is the mean strain evaluated at time \(t + \Delta t\) and \(\theta^{ref}\) is the reference mean strain.
The reference deviatoric stress and reference pressure are given by \(\boldsymbol{\sigma}^{refdev}\) and \(P^{ref}\), respectively.
The middle equation in (74) may also be written as

(75)\[\boldsymbol{\sigma}^{dev}(t + \Delta t) = \frac{1}{a_{E}} \left[\boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) - \boldsymbol{\Delta \epsilon}^{creepdev} \right] + \boldsymbol{\sigma}^{refdev},\]

where

(76)\[\begin{split}\begin{gathered}
\boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) = \boldsymbol{\epsilon}^{dev}(t + \Delta t) - \boldsymbol{\epsilon}^{creepdev}(t) - \boldsymbol{\epsilon}^{refdev}, \\
\boldsymbol{\Delta \epsilon}^{creepdev} = \boldsymbol{\epsilon}^{creepdev}(t + \Delta t) - \boldsymbol{\epsilon}^{creepdev}(t). \\
\end{gathered}\end{split}\]

The creep strain increment is approximated using

(77)\[\boldsymbol{\Delta \epsilon}^{creepdev} = \Delta t \gamma(\tau)\boldsymbol{\sigma}^{dev}(\tau),\]

where, using the \(\alpha\)-method of time integration,

(78)\[\boldsymbol{\sigma}^{dev}(\tau) = (1 - \alpha) \boldsymbol{\sigma}^{dev}(ref, t) + \alpha \boldsymbol{\sigma}^{dev}(ref, t + \Delta t) + \boldsymbol{\sigma}^{refdev} = (1 - \alpha) \boldsymbol{\sigma}^{dev}(t) + \alpha \boldsymbol{\sigma}^{dev}(t + \Delta t),\]

and

(79)\[\gamma(\tau) = \frac{3 \Delta \overline{\epsilon}^{creepdev}}{2 \Delta t \overline{\sigma}(\tau)},\]

where

(80)\[\Delta \overline{\epsilon}^{creepdev} = \sqrt{\frac{2}{3} \boldsymbol{\Delta \epsilon}^{creepdev} : \boldsymbol{\Delta \epsilon}^{creepdev}}\]

and

(81)\[\overline{\sigma}(\tau) = (1 - \alpha) \overline{\sigma}(ref, t) + \alpha \overline{\sigma}(ref, t + \Delta t) + \overline{\sigma}^{ref} = \sqrt{3 J_{2}^{\prime}(\tau)}.\]

Power-law Viscoelastic Models

Laboratory results on rock rheology are typically performed using a triaxial experiment, and the creep data are fit to a power-law equation of the form (e.g., [Kirby and Kronenberg, 1987]:

(82)\[\dot{\epsilon}_{11}^{creep} = A_{E} \exp\left(\frac{-Q}{RT}\right) \left(\sigma_{1} - \sigma_{3}\right)^{n} = A_{E} \exp\left(\frac{-Q}{RT}\right) \sigma_{d}^{n},\]

where \(\dot{\epsilon}_{11}^{creep}\) is the strain rate in the direction of the maximum principal stress \((\sigma_{1})\), \(A_{E}\) is the experimentally-derived pre-exponential constant, \(Q\) is the activation enthalpy, \(R\) is the universal gas constant, \(T\) is the absolute temperature, \(n\) is the power-law exponent, \(\sigma_{3} (= \sigma_{2})\) is equal to the confining pressure, and \(\sigma_{d}\) is the differential stress.
To properly formulate the flow law, it must be generalized so that the results are not influenced by the experiment type or the choice of coordinate systems (e.g., [Paterson, 1994]).
The flow law may then be generalized in terms of the deviatoric stress and strain rate invariants:

(83)\[\sqrt{\dot{L}_{2}^{\prime creep}} = A_{M} \exp \left(\frac{-Q}{RT}\right)\sqrt{J_{2}^{\prime}}^{n},\]

where \(A_{M}\) is now a pre-exponential constant used in the formulation for modeling.
In practice, it is necessary to compute each strain rate component using the flow law.
This is accomplished using:

(84)\[\dot{\epsilon}_{ij}^{creep} = A_{M} \exp \left(\frac{-Q}{RT}\right)\sqrt{J_{2}^{\prime}}^{n-1}\sigma_{ij}^{dev}.\]

Note that (83) and (84) are consistent, since (83) may be obtained from (84) by taking the scalar inner product of both sides, multiplying by 1/2, and taking the square root.

In a triaxial experiment with confining pressure \(P_{c}\), we have

(85)\[\begin{split}\begin{gathered}
\sigma_{2} = \sigma_{3} = P_{c} \\
\sigma_{1} = \sigma_{1}^{app} \\
P = \frac{\sigma_{1} + 2P_{c}}{3}, \\
\end{gathered}\end{split}\]

where \(\sigma_{1}^{app}\) is the applied load.
The deviatoric stresses are then:

(86)\[\begin{split}\begin{gathered}
\sigma_{1}^{dev} = \frac{2}{3} \left(\sigma_{1} - P_{c}\right) \\
\sigma_{2}^{dev} = \sigma_{3}^{dev} = -\frac{1}{3} \left(\sigma_{1} - P_{c}\right). \\
\end{gathered}\end{split}\]

This gives

(87)\[\begin{split}\begin{gathered}
\sigma_{1}^{dev} = \frac{2}{3} \left(\sigma_{1} - \sigma_{3}\right) = \frac{2}{3} \sigma_{d} \\
\sigma_{2}^{dev} = \sigma_{3}^{dev} = -\frac{1}{3} \left(\sigma_{1} - \sigma_{3}\right) = -\frac{1}{3} \sigma_{d}. \\
\end{gathered}\end{split}\]

In terms of the second deviatoric stress invariant, we then have

(88)\[\sqrt{J_{2}^{\prime}} = \frac{\sigma_{d}}{\sqrt{3}}.\]

Under the assumption that the creep measured in the laboratory experiments is incompressible, we have

(89)\[\begin{split}\begin{gathered}
\dot{\epsilon}_{11}^{creepdev} = \dot{\epsilon}_{11} \\
\dot{\epsilon}_{22}^{creepdev} = \dot{\epsilon}_{33} = -\frac{1}{2}\dot{\epsilon}_{11}. \\
\end{gathered}\end{split}\]

In terms of the second deviatoric strain rate invariant we then have

(90)\[\sqrt{\dot{L}_{2}^{\prime creep}} = \frac{\sqrt{3}}{2} \dot{\epsilon}_{11}.\]

Substituting (88) and (90) into (82), we obtain

(91)\[\sqrt{\dot{L}_{2}^{\prime creep}} = A_{E} \frac{\sqrt{3}^{n+1}}{2} \exp\left(\frac{-Q}{RT}\right)\sqrt{J_{2}^{\prime}}^{n},\]

and therefore,

(92)\[A_{M} = \frac{\sqrt{3}^{n+1}}{2}A_{E}.\]

When the exponential factor is included, we define a new parameter:

(93)\[A_{T} = A_{M}\exp\left(\frac{-Q}{RT}\right) = \frac{\sqrt{3}^{n+1}}{2}A_{E} \exp\left(\frac{-Q}{RT}\right).\]

There is a problem with the usage of parameters \(A_{E}\), \(A_{M}\), and \(A_{T}\).
The dimensions of these parameters depend on the value of the power-law exponent; they are not really constants.
In addition to being logically inconsistent, this presents problems when specifying parameters for PyLith, since the power-law exponent must be known before the units can be determined.
An alternative way of writing the flow rule is (e.g., [Prentice, 1968]):

(94)\[\frac{\sqrt{\dot{L}_{2}^{\prime creep}}}{\dot{\epsilon}_{0}^{dev}} = \left(\frac{\sqrt{J_{2}^{\prime}}}{\sigma_{0}^{dev}}\right)^{n},\]

where \(\dot{\epsilon}_{0}^{dev}\) and \(\sigma_{0}^{dev}\) are reference values for the deviatoric strain rate and stress.
This means that

(95)\[\frac{\dot{\epsilon}_{0}^{dev}}{\sigma_{0}^{dev}} = A_{T}.\]

Users must therefore specify three parameters for a power-law material.
The properties power_law_reference_strain_rate, power_law_reference_stress and power_law_exponent in Properties defining elasticity bulk rheologies refer to \(\dot{\epsilon}_{0}^{dev}\), \(\sigma_{0}^{dev}\), and \(n\), respectively.
To specify the power-law properties for PyLith using laboratory results, the user must first compute \(A_{T}\) using (93).
Then, values for \(\dot{\epsilon}_{0}^{dev}\) and \(\sigma_{0}^{dev}\) must be provided.
The simplest method is probably to assume a reasonable value for the reference strain rate, and then compute \(\sigma_{0}^{dev}\) as

(96)\[\sigma_{0}^{dev} = \left(\frac{\dot{\epsilon}_{0}^{dev}}{A_{T}}\right)^{\frac{1}{n}}.\]

We provide pylith_powerlaw_gendb (see pylith_powerlaw_gendb) to convert laboratory results to the properties used by PyLith.
To use the code you must specify the spatial variation of \(A_{E}\), \(Q\), \(n\), and \(T\).
An additional parameter is given to define the units of \(A_{E}\).
You must also specify either a reference stress or a reference strain rate.

The flow law in component form is

(97)\[\dot{\epsilon}_{ij}^{creepdev} = \frac{\dot{\epsilon}_{0}^{dev}\sqrt{J_{2}^{\prime}}^{n-1}\sigma_{ij}^{dev}}{\left(\sigma_{0}^{dev}\right)^{n}},\]

and the creep strain increment is approximated as

(98)\[\boldsymbol{\Delta \epsilon}^{creepdev} \approx \frac{\Delta t \dot{\epsilon}_{0}^{creepdev}\sqrt{J_{2}^{\prime}(\tau)}^{n-1}\boldsymbol{\sigma}^{dev}(\tau)}{\left(\sigma_{0}^{dev}\right)^{n}} = \frac{\Delta t \dot{\epsilon}_{0}^{creepdev}\sqrt{3}\overline{\sigma}(\tau)^{n-1}\boldsymbol{\sigma}^{dev}(\tau)}{\left(\sqrt{3}\sigma_{0}^{dev}\right)^{n}}.\]

Therefore,

(99)\[\Delta \overline{\epsilon}^{creepdev} \approx \frac{2 \Delta t \dot{\epsilon}_{0}^{creepdev}\sqrt{J_{2}^{\prime}(\tau)}^{n}}{\sqrt{3}\left(\sigma_{0}^{dev}\right)^{n}} = \frac{2 \Delta t \dot{\epsilon}_{0}^{creepdev}\overline{\sigma}(\tau)^{n}}{\sqrt{3}^{n+1}\left(\sigma_{0}^{dev}\right)^{n}},\]

and

(100)\[\gamma(\tau) = \frac{\dot{\epsilon}_{0}^{creepdev}\sqrt{J_{2}^{\prime}(\tau)}^{n-1}}{\left(\sigma_{0}^{dev}\right)^{n}}.\]

Combining (78), (98), (99), (100), and (75), we obtain:

(101)\[\boldsymbol{\sigma}^{dev}(t + \Delta t) = \frac{1}{a_{E}} \left\{\boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) - \Delta t \gamma(\tau)\left[(1-\alpha)\boldsymbol{\sigma}^{dev}(t) + \alpha \boldsymbol{\sigma}^{dev}(t + \Delta t)\right]\right\} + \boldsymbol{\sigma}^{refdev},\]

which we can rewrite as

(102)\[\boldsymbol{\sigma}^{dev}(t + \Delta t) \left[a_{E} + \alpha \Delta t \gamma(\tau)\right] = \boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) - \Delta t \gamma(\tau)(1-\alpha)\boldsymbol{\sigma}^{dev}(t) + a_{E} \boldsymbol{\sigma}^{refdev}.\]

Taking the scalar inner product of both sides we obtain:

(103)\[a^{2}J_2^{\prime}(t + \Delta t) - b + c \gamma(\tau) - d^{2}\gamma(\tau)^{2} = F = 0,\]

where

(104)\[\begin{split}\begin{gathered}
a = a_{E} + \alpha \Delta t \gamma(\tau), \\
b = \frac{1}{2} \boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) : \boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) + a_{E} \boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) : \boldsymbol{\sigma}^{refdev} + a_{E}^{2} J_{2}^{\prime ref}, \\
c = \Delta t(1 - \alpha) \boldsymbol{\epsilon}^{\prime dev}(t + \Delta t) : \boldsymbol{\sigma}^{dev}(t) + \Delta t(1 - \alpha) a_{E} \boldsymbol{\sigma}^{dev}(t) : \boldsymbol{\sigma}^{refdev}, \\
d = \Delta t (1 - \alpha) \sqrt{J_{2}^{\prime}(t)}. \\
\end{gathered}\end{split}\]

Equation (103) is a function of a single unknown – the square root of the second deviatoric stress invariant at time \(t + \Delta t\) – which we can solve by bisection or by Newton’s method.
Then we compute the deviatoric stresses for the current time step from (81), (100), and (101).
To compute the total stress we combine the deviatoric and volumetric components from (74).

To compute the tangent stress-strain relation, we first rewrite (102) as

(105)\[\begin{split}\begin{gathered}
\sigma_{ij}^{dev}(t + \Delta t) \left[a_{E} + \alpha \Delta t \gamma(\tau)\right] - \epsilon_{ij}^{\prime dev}(t + \Delta t) + \sigma_{ij}^{dev}(t)\Delta t \gamma(\tau)(1-\alpha) - a_{E} \sigma_{ij}^{refdev} = 0, \\
\sigma_{ij}^{dev}(t + \Delta t)G - \epsilon_{ij}^{\prime dev}(t + \Delta t) + \sigma_{ij}^{dev}(t)H - a_{E} \sigma_{ij}^{refdev} = 0. \\
\end{gathered}\end{split}\]

Taking derivatives with respect to \(\epsilon_{kl}\), we obtain

(106)\[G \frac{\partial \sigma_{ij}^{dev}}{\partial \epsilon_{kl}} + \sigma_{ij}^{dev} \frac{\partial G}{\partial \sigma_{ij}^{dev}} \frac{\partial \sigma_{ij}^{dev}}{\partial \epsilon_{kl}} - \frac{\partial \epsilon_{ij}^{\prime dev}}{\epsilon_{kl}} + \sigma_{ij}^{dev}(t)\frac{\partial H}{\partial \sigma_{ij}^{dev}}\frac{\partial \sigma_{ij}^{dev}}{\partial \epsilon_{kl}} = 0,\]

where we have removed the time notation for quantities evaluated at \(t + \Delta t\).
Rearranging, we compute the Jacobian for the deviatoric stress components using

(107)\[\frac{\partial \sigma_{ij}^{dev}}{\partial \epsilon_{kl}} =
\frac{\frac{\partial \epsilon_{ij}^{\prime dev}}{\partial
\epsilon_{kl}}}{G + \sigma_{ij}^{dev} \frac{\partial G}{\partial \sigma_{ij}^{dev}} + \sigma_{ij}^{dev}(t)\frac{\partial H}{\partial \sigma_{ij}^{dev}}}.\]

Elasticity with Infinitesimal Strain and Prescribed Slip on Faults

For each fault, which is an internal interface, we add a boundary condition to the elasticity equation prescribing the jump in the displacement field across the fault,

(108)\[\begin{gathered}
 \vec{u}^+ - \vec{u}^- - \vec{d}(\vec{x},t) = \vec{0} \text{ on }\Gamma_f,
\end{gathered}\]

where \(\vec{u}^+\) is the displacement vector on the “positive” side of the fault, \(\vec{u}^-\) is the displacement vector on the “negative” side of the fault, \(\vec{d}\) is the slip vector on the fault, and \(\vec{n}\) is the fault normal which points from the negative side of the fault to the positive side of the fault.
We enforce the jump in displacements across the fault using a Lagrange multiplier corresponding to equal and opposite tractions on the two sides of the fault.

We apply conservation of momemtum,

(109)\[\begin{equation}
 \int_\Omega \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_\Omega \vec{f}(\vec{x},t) \, d\Omega + \int_\Gamma \vec{\tau}(\vec{x},t) \, d\Gamma,
\end{equation}\]

to a fault interface \(\Omega_f\) with boundaries \(\Gamma_{f^+}\) and \(\Gamma_{f^-}\).
For a fault interface, the body force is zero, \(\vec{f}(\vec{x},t) = \vec{0}\).
The tractions on the positive and negative fault faces are

(110)\[\begin{gather}
 \tau^+(\vec{x},t) = \boldsymbol{\sigma}^+ \cdot \vec{n} + \vec{\lambda} \\
 \tau^-(\vec{x},t) = \boldsymbol{\sigma}^- \cdot \vec{n} - \vec{\lambda},
\end{gather}\]

where \(\vec{\lambda}\) is the Lagrange multiplier that corresponds to the fault traction generating the prescribed slip and \(\boldsymbol{\sigma}^+\) and \(\boldsymbol{\sigma}^-\) are the stresses in the domain at the positive and negative sides of the fault.
Thus, for a fault interface, we have

(111)\[\begin{equation}
 \int_{\Omega_f} \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_{\Gamma_{f^+}} \boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \, d\Gamma + \int_{\Gamma_{f^-}} \boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \, d\Gamma.
\end{equation}\]

Table 4 Mathematical notation for elasticity equation with infinitesimal strain and prescribed slip on faults.

	Category

	Symbol

	Description

	Unknowns

	\(\vec{u}\)

	Displacement field

	

	\(\vec{v}\)

	Velocity field

	

	\(\vec{\lambda}\)

	Lagrange multiplier field

	Derived quantities

	\(\boldsymbol{\sigma}\)

	Cauchy stress tensor

	

	\(\boldsymbol{\epsilon}\)

	Cauchy strain tensor

	Common constitutive parameters

	\(\rho\)

	Density

	

	\(\mu\)

	Shear modulus

	

	\(K\)

	Bulk modulus

	Source terms

	\(\vec{f}\)

	Body force per unit volume, for example \(\rho \vec{g}\)

	

	\(\vec{d}\)

	Slip vector field on the fault corresponding to a jump in the displacement field across the fault

	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

Quasistatic

As in the case of elasticity without faults, we first consider the quasistatic case in which we neglect the inertial term (\(\rho \frac{\partial \vec{v}}{\partial t} \approx \vec{0}\)).
We place all of the terms in the elasticity equation on the LHS, consistent with implicit time stepping.
Our equation of the conservation of momentum on the fault interface reduces to

(112)\[\begin{equation}
 \int_{\Gamma_{f^+}} \boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \, d\Gamma + \int_{\Gamma_{f^-}} \boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \, d\Gamma = 0.
\end{equation}\]

We enforce this equation on each portion of the fault interface along with our prescribed slip constraint, which leads to

(113)\[\begin{gather}
 \boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} = \vec{0} \text{ on } \Gamma_{f^+}, \\
 \boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} = \vec{0}\text{ on } \Gamma_{f^-}, \\
 \vec{u}^+ - \vec{u}^- - \vec{d}(\vec{x},t) = \vec{0},
\end{gather}\]

Our solution vector consists of both displacements and Lagrange multipliers, and the strong form for the system of equations is

(114)\[\begin{gather}
 % Solution
 \vec{s}^T = \left(\vec{u} \quad \vec{\lambda} \right)^T \\
 % Elasticity
 \vec{f}(\vec{x},t) + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0} \text{ in }\Omega, \\
 % Neumann
 \boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on }\Gamma_\tau, \\
 % Dirichlet
 \vec{u} = \vec{u}_0(\vec{x},t) \text{ on }\Gamma_u, \\
 % Prescribed slip
 \vec{u}^+ - \vec{u}^- - \vec{d}(\vec{x},t) = \vec{0} \text{ on }\Gamma_f, \\
 \boldsymbol{\sigma} \cdot \vec{n} = -\vec{\lambda}(\vec{x},t) \text{ on }\Gamma_{f^+}, \text{ and}\\
 \boldsymbol{\sigma} \cdot \vec{n} = +\vec{\lambda}(\vec{x},t) \text{ on }\Gamma_{f^-}.
\end{gather}\]

We create the weak form by taking the dot product with the trial function \(\vec{\psi}_\mathit{trial}^u\) or \(\vec{\psi}_\mathit{trial}^\lambda\) and integrating over the domain.
After using the divergence theorem and incorporating the Neumann boundary and fault interface conditions, we have

(115)\[\begin{gather}
 % Elasticity
 \int_\Omega \vec{\psi}_\mathit{trial}^u \cdot \vec{f}(\vec{x},t) + \nabla \vec{\psi}_\mathit{trial}^u : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega
 + \int_{\Gamma_\tau} \vec{\psi}_\mathit{trial}^u \cdot \vec{\tau}(\vec{x},t) \, d\Gamma,
 + \int_{\Gamma_{f}} \vec{\psi}_\mathit{trial}^{u^+} \cdot \left(-\vec{\lambda}(\vec{x},t)\right)
 + \vec{\psi}_\mathit{trial}^{u^-} \cdot \left(+\vec{\lambda}(\vec{x},t)\right)\, d\Gamma = 0\\
 % Prescribed slip
 \int_{\Gamma_{f}} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(
 -\vec{u}^+ + \vec{u}^- + \vec{d}(\vec{x},t) \right) \, d\Gamma = 0.
\end{gather}\]

We have chosen the signs in the last equation so that the Jacobian will be symmetric with respect to the Lagrange multiplier.
We solve the system of equations using implicit time stepping, making use of residuals functions and Jacobians for the LHS.

Residual Pointwise Functions

Identifying \(F(t,s,\dot{s})\) and \(G(t,s)\), we have

(116)\[\begin{equation}
\begin{aligned}
% Fu
F^u(t,s,\dot{s}) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot{\color{blue}\underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} + \nabla {\vec{\psi}_\mathit{trial}^{u}} : {\color{blue}\underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u})}_{\color{blue}{\boldsymbol{f^u_1}}}} \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot{\color{blue}\underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} \, d\Gamma + \int_{\Gamma_{f}} {\vec{\psi}_\mathit{trial}^{u^+}} \cdot{\color{blue}\underbrace{\color{black}\left(-\vec{\lambda}(\vec{x},t)\right)}_{\color{blue}{\vec{f}^u_0}}} + {\vec{\psi}_\mathit{trial}^{u^-}} \cdot{\color{blue}\underbrace{\color{black}\left(+\vec{\lambda}(\vec{x},t)\right)}_{\color{blue}{\vec{f}^u_0}}}\, d\Gamma \\
% Fl
F^\lambda(t,s,\dot{s}) &= \int_{\Gamma_{f}} {\vec{\psi}_\mathit{trial}^{\lambda}} \cdot{\color{blue}\underbrace{\color{black}\left(-\vec{u}^+ + \vec{u}^- + \vec{d}(\vec{x},t) \right)}_{\color{blue}{\vec{f}^\lambda_0}}} \, d\Gamma, \\
% Gu
G^u(t,s) &= 0 \\
% Gl
G^\lambda(t,s) &= 0
\end{aligned}
\end{equation}\]

Compared to the quasistatic elasticity case without a fault, we have simply added additional pointwise functions associated with the fault.
Our fault implementation does not change the formulation for the materials or external Dirichlet or Neumann boundary conditions.

Jacobian Pointwise Functions

The LHS Jacobians are:

(117)\[\begin{equation}
\begin{aligned}
% J_F uu
J_F^{uu} &= \frac{\partial F^u}{\partial u} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{u}} = \int_\Omega \nabla {\vec{\psi}_\mathit{trial}^{u}} : -\boldsymbol{C} : \frac{1}{2}(\nabla + \nabla^T){\vec{\psi}_\mathit{basis}^{u}} \, d\Omega = \int_\Omega {\psi_\mathit{trial}^{u}}_{i,k} \,{\color{blue}\underbrace{\color{black}\left(-C_{ikjl} \right)}_{\color{blue}{J_{f3}^{uu}}}} \, {\psi_\mathit{basis}^{u}}_{j,l}\, d\Omega \\
% J_F ul
J_F^{u\lambda} &= \frac{\partial F^u}{\partial \lambda} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{\lambda}} = \int_{\Gamma_{f}} {\psi_\mathit{trial}^{u^+}}_i {\color{blue}\underbrace{\color{black}\left(-\delta_{ij}\right)}_{\color{blue}{J^{u\lambda}_{f0}}}} {\psi_\mathit{basis}^{\lambda}}_j + {\psi_\mathit{trial}^{u^-}}_i {\color{blue}\underbrace{\color{black}\left(+\delta_{ij}\right)}_{\color{blue}{J^{u\lambda}_{f0}}}} {\psi_\mathit{basis}^{\lambda}}_j\, d\Gamma, \\
% J_F lu
J_F^{\lambda u} &= \frac{\partial F^\lambda}{\partial u} + s_\mathit{tshift} \frac{\partial F^\lambda}{\partial \dot{u}} = \int_{\Gamma_{f}} {\psi_\mathit{trial}^{\lambda}}_i {\color{blue}\underbrace{\color{black}\left(-\delta_{ij}\right)}_{\color{blue}{J^{\lambda u}_{f0}}}} {\psi_\mathit{basis}^{u^+}}_j + {\psi_\mathit{trial}^{\lambda}}_i {\color{blue}\underbrace{\color{black}\left(+\delta_{ij}\right)}_{\color{blue}{J^{\lambda u}_{f0}}}} {\psi_\mathit{basis}^{u^-}}_j \, d\Gamma, \\
% J_F ll
J_F^{\lambda \lambda} &= \boldsymbol{0}
\end{aligned}
\end{equation}\]

This LHS Jacobian has the structure

(118)\[\begin{equation}
J_F = \left(\begin{array} {cc} J_F^{uu} & J_F^{u\lambda} \\ J_F^{\lambda u} & 0 \end{array} \right) = \left(\begin{array} {cc} J_F^{uu} & C^T \\ C & 0 \end{array} \right),
\end{equation}\]

where \(C\) contains entries of \(\pm 1\) for degrees of freedom on the two sides of the fault.
The Schur complement of \(J\) with respect to \(J_F^{uu}\) is \(-C\left(J_F^{uu}\right)^{-1}C^T\).

Dynamic

The equation prescribing fault slip is independent of the Lagrange multiplier, so we do not have a system of equations that we can put in
the form \(\dot{s} = G^*(t,s)\).
Instead, we have a differential-algebraic set of equations (DAEs), which we solve using an implicit-explicit (IMEX) time integration scheme.
As in the case of dynamic elasticity without faults, we introduce the velocity (\(\vec{v}\)) as an unknown to turn the elasticity equation into two first order equations.
Our constraint for prescribed slip is

(119)\[\begin{equation}
 \vec{u}^+ - \vec{u}^- - \vec{d} = \vec{0},
\end{equation}\]

where \(\vec{u}\) is the displacement vector and \(\vec{d}\) is the slip vector.
In order to match the order of the time derivative in the elasticity equation, we take the second derivative of the prescribed slip equation with respect to time,

(120)\[\begin{equation}
 \frac{\partial \vec{v}^+}{\partial t} - \frac{\partial \vec{v}^-}{\partial t} - \frac{\partial^2 \vec{d}}{\partial t^2} = \vec{0}.
\end{equation}\]

This means that our differential algebraic equations has a differentiation index of 2.

The strong form for our system of equations is:

(121)\[\begin{gather}
 % Solution
 \vec{s}^T = \left(\vec{u} \quad \vec{v} \quad \vec{\lambda} \right)^T \\
 % Displacement-velocity
 \frac{\partial \vec{u}}{\partial t} = \vec{v}, \\
 % Elasticity
 \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} = \vec{f}(\vec{x},t) + \nabla \cdot \boldsymbol{\sigma}(\vec{u}), \\
 % Neumann BC
 \boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau} \text{ on } \Gamma_\tau. \\
 % Dirichlet BC
 \vec{u} = \vec{u}_0 \text{ on } \Gamma_u, \\
 % Presribed slip
 \frac{\partial \vec{v}^+}{\partial t} - \frac{\partial \vec{v}^-}{\partial t} - \frac{\partial^2 \vec{d}(\vec{x},t)}{\partial t^2} = \vec{0}, \\
 % Momentum balance on fault interface
 \int_{\Omega_f} \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_{\Gamma_{f^+}} \boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \, d\Gamma + \int_{\Gamma_{f^-}} \boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \, d\Gamma.
\end{gather}\]

We generate the weak form in the usual way,

(122)\[\begin{gather}
 % Displacement-velocity
 \int_{\Omega} \vec{\psi}_\mathit{trial}^u \cdot \frac{\partial \vec{u}}{\partial t} \, d\Omega = \int_{\Omega} \vec{\psi}_\mathit{trial}^u \cdot \vec{v} \, d\Omega, \\
 % Elasticity
 \int_{\Omega} \vec{\psi}_\mathit{trial}^v \cdot \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_\Omega \vec{\psi}_\mathit{trial}^v \cdot \vec{f}(\vec{x},t) + \nabla \vec{\psi}_\mathit{trial}^v : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega + \int_{\Gamma_\tau} \vec{\psi}_\mathit{trial}^v \cdot \vec{\tau}(\vec{x},t) \, d\Gamma \\
 \qquad\qquad + \int_{\Gamma_{f}} \vec{\psi}_\mathit{trial}^{v^+} \cdot \left(-\vec{\lambda}(\vec{x},t)\right) + \vec{\psi}_\mathit{trial}^{v^-} \cdot \left(+\vec{\lambda}(\vec{x},t)\right)\, d\Gamma, \\
 % Prescribed slip
 \int_{\Gamma_f} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\frac{\partial \vec{v}^+}{\partial t} - \frac{\partial \vec{v}^-}{\partial t} - \frac{\partial^2 \vec{d}(\vec{x},t)}{\partial t^2} \right) \, d\Gamma = 0. \\
 \int_{\Omega_f} \vec{\psi}_\mathit{trial}^\lambda \cdot \rho(\vec{x}) \frac{\partial \vec{v}}{\partial t} \, d\Omega = \int_{\Gamma_{f^+}} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \right) \, d\Gamma + \int_{\Gamma_{f^-}} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \right) \, d\Gamma.
\end{gather}\]

For compatibility with PETSc TS IMEX implementations, we need \(\dot{\vec{s}}\) on the LHS for the explicit part (displacement-velocity and elasticity equations) and we need \(\vec{\lambda}\) in the equation for the implicit part (prescribed slip equation).
We first focus on the explicit part and select numerical quadrature that yields a lumped mass matrix, \(M\), so that we have

(123)\[\begin{split}\begin{gathered}
 % Displacement-velocity
 \frac{\partial \vec{u}}{\partial t} = M_u^{-1} \int_{\Omega} \vec{\psi}_\mathit{trial}^u \cdot \vec{v} \, d\Omega, \\
 % Elasticity
 \frac{\partial \vec{v}}{\partial t} = M_v^{-1} \int_\Omega \vec{\psi}_\mathit{trial}^v \cdot \vec{f}(\vec{x},t) + \nabla \vec{\psi}_\mathit{trial}^v : -\boldsymbol{\sigma}(\vec{u}) \, d\Omega + M_v^{-1} \int_{\Gamma_\tau} \vec{\psi}_\mathit{trial}^v \cdot \vec{\tau}(\vec{x},t) \, d\Gamma \\
 \qquad\qquad+ M_{v^+}^{-1} \int_{\Gamma_{f}} \vec{\psi}_\mathit{trial}^{v^+} \cdot \left(-\vec{\lambda}(\vec{x},t)\right) \, d\Gamma + M_{v^-}^{-1} \int_{\Gamma_{f}}\vec{\psi}_\mathit{trial}^{v^-} \cdot \left(+\vec{\lambda}(\vec{x},t)\right) \, d\Gamma, \\
 M_u = \mathit{Lump}\left(\int_\Omega \psi_{\mathit{trial}_i}^u \delta_{ij} \psi_{\mathit{basis}_j}^u \, d\Omega \right), \\
 M_v = \mathit{Lump}\left(\int_\Omega \psi_{\mathit{trial}_i}^v \rho(\vec{x}) \delta_{ij} \psi_{\mathit{basis}_j}^v \, d\Omega \right).
\end{gathered}\end{split}\]

For the implicit part, we can separate the integration of the weak form for negative and positive sides of the fault interface, which yields

(124)\[\begin{gather}
 M_{v^+} \frac{\partial \vec{v}^+}{\partial t} = \int_{\Gamma_{f^+}} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \right) \, d\Gamma, \\
 M_{v^-} \frac{\partial \vec{v}^-}{\partial t} = \int_{\Gamma_{f^-}} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\boldsymbol{\sigma} \cdot \vec{n} - \vec{\lambda} \right) \, d\Gamma.
\end{gather}\]

Using these equations to substitute in the expressions for the time derivative of the velocity on the negative and positive sides of the fault into the prescribed slip constraint equation yields

(125)\[M_{v^+}^{-1} \int_{\Gamma_f^+} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda}\right) \, d\Gamma + M_{v^-}^{-1} \int_{\Gamma_f^-} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(-\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \right) \, d\Gamma + \int_{\Gamma_f} \vec{\psi}_\mathit{trial}^\lambda \cdot \left(-\frac{\partial^2 \vec{d}}{\partial t^2} \right) \, d\Gamma = \vec{0}.\]

Residual Pointwise Functions

Combining the explicit parts of the weak form in equation (123) with the implicit part of the weak form in equation (125) and identifying \(F(t,s,\dot{s})\) and \(G(t,s)\), we have

(126)\[\begin{gather}
% Fu
 F^u(t,s,\dot{s}) = \frac{\partial \vec{u}}{\partial t} \\
% Fv
 F^v(t,s,\dot{s}) = \frac{\partial \vec{v}}{\partial t} \\
% Fl
 F^\lambda(t,s,\dot{s}) = {\color{blue}\underbrace{\color{black}M_{v^+}^{-1}}_{\color{blue}{c^+}}} \int_{\Gamma_f^+} \vec{\psi}_\mathit{trial}^\lambda \cdot {\color{blue}\underbrace{\color{black}\left(\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda}\right)}_{\color{blue}{f^\lambda_0}}} \, d\Gamma + {\color{blue}\underbrace{\color{black}M_{v^-}^{-1}}_{\color{blue}{c^-}}} \int_{\Gamma_f^-} \vec{\psi}_\mathit{trial}^\lambda \cdot {\color{blue}\underbrace{\color{black}\left(-\boldsymbol{\sigma} \cdot \vec{n} + \vec{\lambda} \right)}_{\color{blue}{f^\lambda_0}}} \, d\Gamma + \int_{\Gamma_f} \vec{\psi}_\mathit{trial}^\lambda \cdot {\color{blue}\underbrace{\color{black}-\frac{\partial^2 \vec{d}}{\partial t^2}}_{\color{blue}{f^\lambda_0}}} \, d\Gamma \\
% Gu
 G^u(t,s) = {\color{blue}\underbrace{\color{black}M_{u}^{-1}}_{\color{blue}{c}}} \int_\Omega \vec{\psi}_\mathit{trial}^u \cdot {\color{blue}\underbrace{\color{black}\vec{v}}_{\color{blue}{\vec{g}^u_0}}} \, d\Omega, \\
 % Gv
 G^v(t,s) = {\color{blue}\underbrace{\color{black}M_{v}^{-1}}_{\color{blue}{c}}} \left(\int_\Omega \vec{\psi}_\mathit{trial}^v \cdot {\color{blue}\underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} + \nabla \vec{\psi}_\mathit{trial}^v : {\color{blue}\underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u})}_{\color{blue}{\boldsymbol{g^v_1}}}} \, d\Omega + \int_{\Gamma_\tau} \vec{\psi}_\mathit{trial}^v \cdot {\color{blue}\underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} \, d\Gamma, + \int_{\Gamma_{f}} \vec{\psi}_\mathit{trial}^{v^+} \cdot {\color{blue}\underbrace{\color{black}\left(-\vec{\lambda}(\vec{x},t)\right)}_{\color{blue}{\vec{g}^v_0}}} + \vec{\psi}_\mathit{trial}^{v^-} \cdot {\color{blue}\underbrace{\color{black}\left(+\vec{\lambda}(\vec{x},t)\right)}_{\color{blue}{\vec{g}^v_0}}} \, d\Gamma \right), \\
% Gl
 G^\lambda(t,s) = 0
\end{gather}\]

The integrals for the explicit part are all weighted by the inverse of the lumped mass matrix.
For the implicit part, only the integrals over the positive and negative sides of the fault are weighted by the inverse of the lumped mass matrix.

Jacobian Pointwise Functions

For the explicit part we have pointwise functions for computing the lumped LHS Jacobian. These are exactly the same pointwise functions as in the dynamic case without a fault,

(127)\[\begin{align}
 % J_F uu
 J_F^{uu} &= \frac{\partial F^u}{\partial u} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{u}} =
 \int_\Omega \psi_{\mathit{trial}^u_i} {\color{blue}\underbrace{\color{black}s_\mathit{tshift} \delta_{ij}}_{\color{blue}{J^{uu}_{f0}}}} \psi_{\mathit{basis}^u_j} \, d\Omega, \\
 % J_F vv
 J_F^{vv} &= \frac{\partial F^v}{\partial v} + s_\mathit{tshift} \frac{\partial F^v}{\partial \dot{v}} =
 \int_\Omega \psi_{\mathit{trial}^v_i} {\color{blue}\underbrace{\color{black}\rho(\vec{x}) s_\mathit{tshift} \delta_{ij}}_{\color{blue}{J ^{vv}_{f0}}}} \psi_{\mathit{basis}^v_j} \, d\Omega
\end{align}\]

For the implicit part, we have pointwise functions for the LHS Jacobians associated with the prescribed slip,

(128)\[\begin{gather}
 % J_F lu
 J_F^{\lambda u} = \frac{\partial F^\lambda}{\partial u} + s_\mathit{tshift} \frac{\partial F^\lambda}{\partial \dot{u}} = {\color{blue}\underbrace{\color{black}M_{v^+}^{-1}}_{\color{blue}{c^+}}} \int_{\Gamma_{f^+}} \psi_{\mathit{trial}_i}^\lambda {\color{blue}\underbrace{\color{black} C_{kijl} n_k}_{\color{blue}{J^{\lambda u}_{f1}}}} \psi_{\mathit{basis}_{j,l}}^u \, d\Gamma + {\color{blue}\underbrace{\color{black}M_{v^-}^{-1}}_{\color{blue}{c^-}}} \int_{\Gamma_{f^-}} \psi_{\mathit{trial}_i}^\lambda {\color{blue}\underbrace{\color{black}- C_{kijl} n_k}_{\color{blue}{J^{\lambda u}_{f1}}}} \psi_{\mathit{basis}_{j,l}}^u \, d\Gamma, \\
% J_F ll
 J_F^{\lambda \lambda} = \frac{\partial F^\lambda}{\partial \lambda} + s_\mathit{tshift} \frac{\partial F^\lambda}{\partial \dot{\lambda}} = {\color{blue}\underbrace{\color{black}M_{v^+}^{-1}}_{\color{blue}{c^+}}} \int_{\Gamma_{f^+}} \psi_{\mathit{trial}_i}^\lambda {\color{blue}\underbrace{\color{black} \delta_{ij}}_{\color{blue}{J^{\lambda\lambda}_{f0}}}} \psi_{\mathit{basis}_j}^\lambda \, d\Gamma + {\color{blue}\underbrace{\color{black}M_{v^-}^{-1}}_{\color{blue}{c^-}}} \int_{\Gamma_{f^-}} \psi_{\mathit{trial}_i}^\lambda {\color{blue}\underbrace{\color{black} \delta_{ij}}_{\color{blue}{J^{\lambda\lambda}_{f0}}}} \psi_{\mathit{basis}_j}^\lambda \, d\Gamma
\end{gather}\]

Incompressible Isotropic Elasticity with Infinitesimal Strain (Bathe)

In this section we apply a similar approach to the one we use for the elasticity equation to the case of an incompressible material.
We only consider the quasistatic case (neglect inertia) without faults.
As the bulk modulus (\(K\)) approaches infinity, the volumetric strain (\(\mathop{\mathrm{Tr}}(\epsilon)\)) approaches zero and the pressure remains finite, \(p = -K \mathop{\mathrm{Tr}}(\epsilon)\).
We consider pressure \(p\) as an independent variable and decompose the stress into the pressure and deviatoric components.
As a result, we write the stress tensor in terms of both the displacement and pressure fields,

(129)\[\begin{equation}
\boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{\sigma}^\mathit{dev}(\vec{u}) - p\boldsymbol{I}.
\end{equation}\]

The strong form is

(130)\[\begin{gather}
 % Solution
 \vec{s}^T = \left(\vec{u} \quad \ p \right)^T, \\
 % Elasticity
 \vec{f}(t) + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\sigma}^\mathit{dev}(\vec{u}) - p\boldsymbol{I}\right) = \vec{0} \text{ in }\Omega, \\
 % Pressure
 \vec{\nabla} \cdot \vec{u} + \frac{p}{K} = 0 \text{ in }\Omega, \\
 % Neumann
 \boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau} \text{ on }\Gamma_\tau, \\
 % Dirichlet
 \vec{u} = \vec{u}_0 \text{ on }\Gamma_u, \\
 p = p_0 \text{ on }\Gamma_p.
\end{gather}\]

We place all terms for the elasticity and pressure equations on the left-hand-side, consistent with PETSc TS implicit time stepping.

Table 5 Mathematical notation for incompressible elasticity with infinitesimal strain

	Category

	Symbol

	Description

	Unknowns

	\(\vec{u}\)

	Displacement field

	

	\(p\)

	Pressure field (\(p>0\) corresponds to negative mean stress)

	Derived quantities

	\(\boldsymbol{\sigma}\)

	Cauchy stress tensor

	

	\(\boldsymbol{\sigma}^\mathit{dev}\)

	Cauchy deviatoric stress tensor

	

	\(\boldsymbol{\epsilon}\)

	Cauchy strain tensor

	Common constitutive parameters

	\(\rho\)

	Density

	

	\(\mu\)

	Shear modulus

	

	\(K\)

	Bulk modulus

	Source terms

	\(\vec{f}\)

	Body force per unit volume, for example \(\rho \vec{g}\)

Using trial functions \({\vec{\psi}_\mathit{trial}^{u}}\) and \({\psi_\mathit{trial}^{p}}\) and incorporating the Neumann boundary conditions, we write the weak form as

(131)\[\begin{gather}
% Displacement
\int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{f}(t) + \nabla {\vec{\psi}_\mathit{trial}^{u}} : \left(-\boldsymbol{\sigma}^\mathit{dev}(\vec{u}) + p\boldsymbol{I}
\right)\, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{\tau}(t) \, d\Gamma, = 0 \\
% Pressure
\int_\Omega {\psi_\mathit{trial}^{p}} \cdot \left(\vec{\nabla} \cdot \vec{u} + \frac{p}{K} \right) \, d\Omega = 0.
\end{gather}\]

Residual Pointwise Functions

Identifying \(F(t,s,\dot{s})\), we have

(132)\[\begin{split}\begin{gathered}
F^u(t,s,\dot{s}) = \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot{\color{blue}
\underbrace{\color{black}\vec{f}(t)}_{\color{blue}{f_0^u}}} + \nabla {\vec{\psi}_\mathit{trial}^{u}} :{\color{blue}
\underbrace{\color{black}\left(-\boldsymbol{\sigma}^\mathit{dev}(\vec{u}) + p\boldsymbol{I}\right)}_{\color{blue}{f_1^u}}} \, d\Omega
+ \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue}\underbrace{\color{black}\vec{\tau}(t)}_{\color{blue}{f_0^u}}} \, d\Gamma, \\
%
\end{gathered}\end{split}\]

(133)\[\begin{gathered}
F^p(t,s,\dot{s}) = \int_\Omega {\psi_\mathit{trial}^{p}} \cdot {\color{blue}\underbrace{\color{black}\left(\vec{\nabla} \cdot \vec{u} +
\frac{p}{K} \right)}_{\color{blue}{f_0^p}}} \, d\Omega.
\end{gathered}\]

Jacobians Pointwise Functions

With two fields we have four Jacobian pointwise functions for the LHS:

(134)\[\begin{align}
% JF uu
J_F^{uu} &= \frac{\partial F^u}{\partial u} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{u}} =
 \int_\Omega \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial u}(-\boldsymbol{\sigma}^\mathit{dev}) \, d\Omega
 = \int_\Omega {\psi_\mathit{trial}^{u}}_{i,k} \, {\color{blue}
\underbrace{\color{black}\left(-C^\mathit{dev}_{ikjl}\right)}_{\color{blue}{J_{f3}^{uu}}}} \, {\psi_\mathit{basis}^{u}}_{j,l}\, d\Omega \\
% JF up
J_F^{up} &= \frac{\partial F^u}{\partial p} + s_\mathit{tshift} \frac{\partial F^u}{\partial \dot{p}} =
 \int_\Omega \nabla{\vec{\psi}_\mathit{trial}^{u}} : \boldsymbol{I} {\psi_\mathit{basis}^{p}} \, d\Omega
 = \int_\Omega {\psi_\mathit{trial}^{u}}_{i,k} {\color{blue} \underbrace{\color{black}\delta_{ik}}_{\color{blue}{J_{f2}^{up}}}} \, {\psi_\mathit{basis}^{p}} \, d\Omega \\
% JF pu
J_F^{pu} &= \frac{\partial F^p}{\partial u} + s_\mathit{tshift} \frac{\partial F^p}{\partial \dot{u}} =
 \int_\Omega {\psi_\mathit{trial}^{p}} \left(\vec{\nabla} \cdot {\vec{\psi}_\mathit{basis}^{u}}\right) \, d\Omega
 = \int_\Omega {\psi_\mathit{trial}^{p}} {\color{blue}\underbrace{\color{black}\delta_{jl}}_{\color{blue}{J_{f1}^{pu}}}} {\psi_\mathit{basis}^{u}}_{j,l} \, d\Omega\\
% JF pp
J_F^{pp} &= \frac{\partial F^p}{\partial p} + s_\mathit{tshift} \frac{\partial F^p}{\partial \dot{p}} =
 \int_\Omega {\psi_\mathit{trial}^{p}}{\color{blue}\underbrace{\color{black}\frac{1} {K}}_{\color{blue}{J_{f0}^{pp}}}} {\psi_\mathit{basis}^{p}} \, d\Omega
\end{align}\]

For isotropic, linear incompressible elasticity, the deviatoric elastic constants are:

(135)\[\begin{align}
 C^\mathit{dev}_{1111} &= C^\mathit{dev}_{2222} = C^\mathit{dev}_{3333} = +\frac{4}{3} \mu \\
 C^\mathit{dev}_{1122} &= C^\mathit{dev}_{1133} = C^\mathit{dev}_{2233} = -\frac{2}{3} \mu \\
 C^\mathit{dev}_{1212} &= C^\mathit{dev}_{1313} = C^\mathit{dev}_{2323} = \mu
\end{align}\]

Poroelasticity with Infinitesimal Strain and No Faults

We base this formulation for poroelasticity on Zheng et al. and Detournay and Cheng (1993).
We assume a slightly compressible fluid that completely saturates a porous solid, undergoing infinitesimal strain.

We begin with the conservation of linear momentum, including inertia, borrowed from linear elasticity:

(136)\[\begin{equation}
 \rho_s\frac{\partial^2 \vec{u}}{\partial t^2} = \vec{f}(t) + \nabla \cdot \boldsymbol{\sigma}(\vec{u},p).
\end{equation}\]

Enforcing mass balance of the fluid gives

(137)\[\begin{gather}
 \frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) =
 \gamma(\vec{x},t) \text{ in } \Omega, \\
%
 \vec{q} \cdot \vec{n} = q_0(\vec{x},t) \text{ on }\Gamma_q, \\
%
 p = p_0(\vec{x},t) \text{ on }\Gamma_p,
\end{gather}\]

where \(\zeta\) is the variation in fluid content, \(\vec{q}\) is the rate of fluid volume crossing a unit area of the porous solid, \(\gamma\) is the rate of injected fluid per unit volume of the porous solid, \(q_0\) is the outward fluid velocity normal to the boundary \(\Gamma_q\), and \(p_0\) is the fluid pressure on boundary \(\Gamma_p\).

We require the fluid flow to follow Darcy’s law (Navier-Stokes equation neglecting inertial effects),

(138)\[\begin{equation}
 \vec{q}(p) = -\frac{\boldsymbol{k}}{\mu_{f}}(\nabla p - \vec{f}_f),
\end{equation}\]

where \(\boldsymbol{k}\) is the intrinsic permeability, \(\mu_f\) is the viscosity of the fluid, \(p\) is the fluid pressure, and \(\vec{f}_f\) is the body force in the fluid.
If gravity is included in a problem, then usually \(\vec{f}_f = \rho_f \vec{g}\), where \(\rho_f\) is the density of the fluid and \(\vec{g}\) is the gravitational acceleration vector.

Constitutive Behavior

We assume linear elasticity for the solid phase, so the constitutive behavior can be expressed as

(139)\[\begin{equation}
 \boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C} : \boldsymbol{\epsilon} - \alpha p \boldsymbol{I},
\end{equation}\]

where \(\boldsymbol{\sigma}\) is the stress tensor, \(\boldsymbol{C}\) is the tensor of elasticity constants, \(\alpha\) is the Biot coefficient (effective stress coefficient), \(\boldsymbol{\epsilon}\) is the strain tensor, and \(\boldsymbol{I}\) is the identity tensor.
For this case, we will assume that the material properties are isotropic, resulting in the following formulation for the stress tensor:

(140)\[\begin{equation}
 \boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C}:\boldsymbol{\epsilon} - \alpha p \boldsymbol{I}
 = \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu \boldsymbol{\epsilon} - \alpha \boldsymbol{I} p
\end{equation}\]

where \(\lambda\) and \(\mu\) are Lamé’s parameters, \(\lambda = K_{d} - \frac{2 \mu}{3}\), \(\mu\) is the shear modulus, and the volumetric strain is defined as \(\epsilon_{v} = \nabla \cdot \vec{u}\).

For the constitutive behavior of the fluid, we use the volumetric strain to couple the fluid-solid behavior,

(141)\[\begin{gather}
 \zeta(\vec{u},p) = \alpha \mathop{\mathrm{Tr}}({\boldsymbol{\epsilon}}) + \frac{p}{M}, \\
%
 \frac{1}{M} = \frac{\alpha-\phi}{K_s} + \frac{\phi}{K_f},
\end{gather}\]

where \(1/M\) is the specific storage coefficient at constant strain, \(K_s\) is the bulk modulus of the solid, and \(K_f\) is the bulk modulus of the fluid.
We can write the trace of the strain tensor as the dot product of the gradient and displacement field, so we have

(142)\[\begin{equation}
 \zeta(\vec{u},p) = \alpha (\nabla \cdot \vec{u}) + \frac{p}{M}.
\end{equation}\]

Table 6 Mathematical notation for poroelasticity with infinitesimal strain.

	Category

	Symbol

	Description

	Unknowns

	\(\vec{u}\)

	Displacement field

	

	\(\vec{v}\)

	Velocity field

	

	\(p\)

	Pressure field (corresponds to pore fluid pressure)

	

	\(\epsilon_{v}\)

	Volumetric (trace) strain

	Derived quantities

	\(\boldsymbol{\sigma}\)

	Cauchy stress tensor

	

	\(\boldsymbol{\epsilon}\)

	Cauchy strain tensor

	

	\(\zeta\)

	Variation of fluid content (variation of fluid vol. per unit vol. of PM), \(\alpha \epsilon_{v} + \frac{p}{M}\)

	

	\(\rho_{b}\)

	Bulk density, \(\left(1 - \phi\right) \rho_{s} + \phi \rho_{f}\)

	

	\(\vec{q}\)

	Darcy flux, \(-\frac{\boldsymbol{k}}{\mu_{f}} \cdot \left(\nabla p - \vec{f}_{f}\right)\)

	

	\(M\)

	Biot modulus

	Common constitutive parameters

	\(\rho_{f}\)

	Fluid density

	

	\(\rho_{s}\)

	Solid (matrix) density

	

	\(\phi\)

	Porosity

	

	\(\boldsymbol{k}\)

	Permeability

	

	\(\mu_{f}\)

	Fluid viscosity

	

	\(K_{s}\)

	Solid grain bulk modulus

	

	\(K_{f}\)

	Fluid bulk modulus

	

	\(K_{d}\)

	Drained bulk modulus

	

	\(\alpha\)

	Biot coefficient, \(1 - \frac{K_{d}}{K_{s}}\)

	Source terms

	\(\vec{f}\)

	Body force per unit volume, for example: \(\rho_{b} \vec{g}\)

	

	\(\vec{f}_{f}\)

	Fluid body force, for example: \(\rho_{f} \vec{g}\)

	

	\(\gamma\)

	Source density; rate of injected fluid per unit volume of the porous solid

	Quasistatic
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Porosity State Variable
	Residual Pointwise Functions

	Jacobian Pointwise Functions

	Dynamic
	Residual Pointwise Functions

	Jacobians Pointwise Functions

Quasistatic

For ease of solution in the quasistatic case, we introduce a third variable in the form of volumetric strain (\(\epsilon_v\)).
The strong form of the problem may be expressed as

(143)\[\begin{gather}
% Solution
 \vec{s}^{T} = \left(\vec{u} \quad p \quad \epsilon_v\right), \\
% Elasticity
 \vec{f}(t) + \nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0} \text{ in } \Omega, \\
% Pressure
 \frac{\partial \zeta(\vec{u},p)}{\partial t} - \gamma(\vec{x},t) + \nabla \cdot \vec{q}(p) = 0 \text{ in } \Omega, \\
% Vol. Strain
 \nabla \cdot \vec{u} - \epsilon_{v} = 0 \text{ in } \Omega, \\
% Neumann traction
 \boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on } \Gamma_{\tau}, \\
% Dirichlet displacement
 \vec{u} = \vec{u}_0(\vec{x}, t) \text{ on } \Gamma_{u}, \\
% Neumann flow
 \vec{q} \cdot \vec{n} = q_0(\vec{x}, t) \text{ on } \Gamma_{q}, \text{ and } \\
% Dirichlet pressure
 p = p_0(\vec{x},t) \text{ on } \Gamma_{p}.
\end{gather}\]

We place all terms for the elasticity, pressure, an volumetric strain equations on the left-hand-side, consistent with PETSc TS implicit time stepping.

We create the weak form by taking the dot product with the trial functions \({\vec{\psi}_\mathit{trial}^{u}}\), \({\psi_\mathit{trial}^{p}}\), and \({\psi_\mathit{trial}^{\epsilon_{v}}}\) and integrating over the domain:

(144)\[\begin{gather}
% Weak conservation of momentum
 \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \left(\vec{f}(\vec{x},t) + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma} (\vec{u},p) \right) \, d\Omega = 0, \\
% Weak conservation of mass
 \int_\Omega {\psi_\mathit{trial}^{p}} \left(\frac{\partial \zeta(\vec{u},p)}{\partial t} - \gamma(\vec{x},t) + \nabla \cdot \vec{q}(p)\right) \, d\Omega = 0,\\
% Weak vol. strain
 \int_{\Omega} {\psi_\mathit{trial}^{\epsilon_{v}}}\cdot \left(\nabla \cdot \vec{u} - \epsilon_v \right) \, d\Omega.
\end{gather}\]

Applying the divergence theorem to the first two equations and incorporating the Neumann boundary conditions yields

(145)\[\begin{gather}
% Weak conservation of momentum
 \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{f}(\vec{x},t) + \nabla {\vec{\psi}_\mathit{trial}^{u}} : -\boldsymbol{\sigma}(\vec{u},p_f) \,
 d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma = 0, \\
% Weak conservation of mass
 \int_\Omega {\psi_\mathit{trial}^{p}} \left(\frac{\partial \zeta(\vec{u},p_f)}{\partial t} - \gamma(\vec{x},t)\right)
 + \nabla {\psi_\mathit{trial}^{p}} \cdot \left(-\vec{q}(p_f)\right) \, d\Omega + \int_{\Gamma_q} {\psi_\mathit{trial}^{p}} q_0(\vec{x},t))\, d\Gamma = 0, \text{ and } \\
% Weak vol. strain
 \int_{\Omega} {\psi_\mathit{trial}^{\epsilon_{v}}} \cdot \left(\nabla \cdot \vec{u} - \epsilon_{v} \right) d\Omega = 0
\end{gather}\]

Residual Pointwise Functions

Identifying \(F(t,s,\dot{s})\) and \(G(t,s)\) we have

(146)\[\begin{align}
 % LHS displacement
 F^u(t,s,\dot{s}) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue} \underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} + \nabla {\vec{\psi}_\mathit{trial}^{u}} : {\color{blue} \underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u},p_f)}_{\color{blue}{\boldsymbol{f}^u_1}}} \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue} \underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{f}^u_0}}} \, d\Gamma, \\
% RHS displacement
 G^u(t,s) &= 0, \\
% LHS fluid pressure
 F^p(t,s,\dot{s}) &= \int_\Omega {\psi_\mathit{trial}^{p}} {\color{blue} \underbrace{\left(\color{black}\frac{\partial \zeta(\vec{u},p_f)}{\partial t} - \gamma(\vec{x},t)\right)}_{\color{blue}{f^p_0}}} + \nabla {\psi_\mathit{trial}^{p}} \cdot {\color{blue} \underbrace{\color{black}-\vec{q}(p_f)}_{\color{blue}{\vec{f}^p_1}}} \, d\Omega + \int_{\Gamma_q} {\psi_\mathit{trial}^{p}} ({\color{blue} \underbrace{\color{black}q_0(\vec{x},t)}_{\color{blue}{f^p_0}}}) \, d\Gamma, \\
% RHS fluid pressure
 G^p(t,s) &= 0, \\
% LHS trace strain
 F^{\epsilon_{v}}(t,s,\dot{s}) &= \int_{\Omega} {\psi_\mathit{trial}^{\epsilon_{v}}} \cdot {\color{blue}
 \underbrace{\color{black}\left(\nabla \cdot \vec{u} - \epsilon_{v} \right)}_{\color{blue}{f^{\epsilon_{v}}_{0}}}} \, d\Omega. \\
% RHS trace strain
 G^{\epsilon_v} &= 0.
\end{align}\]

Jacobian Pointwise Functions

Three field results in a potential nine Jacobian pointwise functions for the LHS:

(147)\[\begin{align}
%
% JF_UU
% Jf3uu
 J_F^{uu} &= \frac{\partial F^u}{\partial u} + s_{tshift} \frac{\partial F^u}{\partial \dot{u}} = \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial u} (- \sigma(\vec{u},p,\epsilon_{v})) \
 d\Omega = \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial u} (-(\boldsymbol{C}:\boldsymbol{\varepsilon} -\alpha p \boldsymbol{I})) \ d\Omega \\
 &= \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : -\boldsymbol{C}: \frac{1}{2} (\nabla + \nabla^T) {\vec{\psi}_\mathit{basis}^{u}} \ d\Omega = \int_{\Omega} {\psi_\mathit{trial}^{u}}_{i,k}{\color{blue} \underbrace{\color{black}\left(-C_{ikjl}\right)}_{\color{blue}{J_{f3}^{uu}}}} {\psi_\mathit{basis}^{u}}_{j,l} \ d\Omega \\
%
% JF_UP
% Jf2up
 J_F^{up} &= \frac{\partial F^u}{\partial p} + s_{tshift} \frac{\partial F^u}{\partial \dot{p}} = \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial p}(-(\boldsymbol{C}:\boldsymbol{\varepsilon} -\alpha p \boldsymbol{I})) \ d\Omega =
 \int_{\Omega} {\psi_\mathit{trial}^{u}}_{i,j}{\color{blue} \underbrace{\color{black}\left(\alpha \delta_{ij}\right)}_{\color{blue}{J_{f2}^{up}}}} {\psi_\mathit{basis}^{p}} \ d\Omega \\
%
% JF_UE
% Jf2ue
 J_F^{u \epsilon_{v}} &= \frac{\partial F^u}{\partial \epsilon_{v}} + s_{tshift} \frac{\partial F^u}{\partial \dot{\epsilon_{v}}} = \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial \epsilon_{v}}
 (-\sigma(\vec{u},p,\epsilon_{v})) \ d\Omega = \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} :
 \frac{\partial}{\partial \epsilon_{v}} (-(\boldsymbol{C}:\boldsymbol{\varepsilon} -\alpha p \boldsymbol{I})) \ d\Omega \\
 &= \int_{\Omega} \nabla {\vec{\psi}_\mathit{trial}^{u}} : \frac{\partial}{\partial \epsilon_{v}} \
 \left[-\left(2 \mu \boldsymbol{\epsilon} + \lambda \boldsymbol{I} \epsilon_{v} - \alpha \boldsymbol{I} p \right) \right] d\Omega =
 \int_{\Omega} {\psi_\mathit{trial}^{u}}_{i,j}{\color{blue} \underbrace{\color{black}\left(-\lambda \delta_{ij} \right)}_{\color{blue}{J_{f2}^{u \epsilon_{v}}}}} {\psi_\mathit{basis}^{\epsilon_{v}}} d\Omega \\
%
% JF_PU
%
 J_F^{pu} &= \frac{\partial F^p}{\partial u} + s_{tshift} \frac{\partial F^p}{\partial \dot{u}} = 0 \\
%
% JF_PP
% Jf0pp
 J_F^{pp} &= \frac{\partial F^p}{\partial p} + s_{tshift} \frac{\partial F^p}{\partial \dot{p}} =
 \int_{\Omega} \nabla {\psi_\mathit{trial}^{p}} \cdot \frac{\partial}{\partial p} -\left[-\frac{\boldsymbol{k}}{\mu_{f}} \left(\nabla p - \vec{f} \right) \right] \ d\Omega +
 s_{tshift}\int_{\Omega} {\psi_\mathit{trial}^{p}} \frac{\partial}{\partial \dot{p}} \left[\alpha\dot{\epsilon}_{v} + \frac{\dot{p}}{M} - \gamma\left(\vec{x},t\right)\right] \ d\Omega \\
 &= \int_{\Omega} \nabla \psi_{trial}^ p \left(\frac{\boldsymbol{k}}{\mu_{f}} \nabla \cdot \psi_{basis}^p \right) \ d\Omega +
 \int_{\Omega} {\psi_\mathit{trial}^{p}} \left(s_{tshift} \frac{1}{M}\right) {\psi_\mathit{basis}^{p}} \ d\Omega \\
 &= \int_{\Omega} \psi_{trial,k}^p {\color{blue}\underbrace{\color{black}\left(\frac{\boldsymbol{k}}{\mu_{f}} \delta_{kl}\right)}_{\color{blue}{J_{f3}^{pp}}}} \psi_{basis,l}^p \ d\Omega +\int_{\Omega} {\psi_\mathit{trial}^{p}} {\color{blue} \underbrace{\color{black}\left(s_{tshift} \frac{1}{M}\right)}_{\color{blue}{J_{f0}^{pp}}}} {\psi_\mathit{basis}^{p}} \ d\Omega \\
%
% JF_PE
% Jf0pe
 J_F^{p\epsilon_{v}} &= \frac{\partial F^p}{\partial \epsilon_{v}} + s_{tshift} \frac{\partial
 F^p}{\partial \dot{\epsilon_{v}}} = \int_{\Omega} {\psi_\mathit{trial}^{p}} {\color{blue} \underbrace{\color{black}\left(s_{tshift} \alpha \right)}_{\color{blue}{J_{f0}^{p\epsilon_{v}}}}}
 {\psi_\mathit{basis}^{\epsilon_{v}}} \ d\Omega \\
%
% JF_EU
% Jf1eu
 J_F^{\epsilon_{v}u} &= \frac{\partial F^{\epsilon_{v}}}{\partial u} + s_{tshift} \frac{\partial F^{\epsilon_{v}}}{\partial \dot{u}} =
 \int_{\Omega} \psi_{trial}^{\epsilon_{v}} \nabla \cdot \vec{\psi}_{basis}^u \ d\Omega = \int_{\Omega}
 {\psi_\mathit{basis}^{\epsilon_{v}}} {\color{blue} \underbrace{\color{black}\left(\delta_{ij}\right)}_{\color{blue}{J_{f1}^{\epsilon_{v}u}}}}
 {\psi_\mathit{basis}^{u}}_{i,j} \ d\Omega\\
%
% JF_EP
%
 J_F^{\epsilon_{v}p} &= \frac{\partial F^{\epsilon_{v}}}{\partial p} + s_{tshift} \frac{\partial F^{\epsilon_{v}}}{\partial \dot{p}} = 0 \\
%
% JF_EE
%
 J_F^{\epsilon_{v}\epsilon_{v}} &= \frac{\partial F^\epsilon_{v}}{\epsilon_{v}} + s_{tshift} \frac{\partial F^{\epsilon_{v}}}{\partial \dot{\epsilon_{v}}} =
 \int_{\Omega} {\psi_\mathit{basis}^{\epsilon_{v}}} {\color{blue} \underbrace{\color{black}\left(-1\right)}_{\color{blue}{J_{f0}^{\epsilon_{v}\epsilon_{v}}}}} {\psi_\mathit{basis}^{\epsilon_{v}}} \ d\Omega
\end{align}\]

Porosity State Variable

The default poroelasticity implementation uses a porosity that can vary in space but does not vary in time.
PyLith also includes an implementation with porosity as a state variable that allows it to evolve in time as well as vary in space.

For isothermal conditions Detournay and Cheng [1993] derive a differential equation for the change in porosity:

(148)\[\begin{equation}
\frac{\partial \phi(\vec{x}, t)}{\partial t} = (\alpha(\vec{x}) - \phi(\vec{x}, t))\left(\dot{\epsilon}_v(\vec{x}, t) + \frac{1-\alpha(\vec{x})}{K_d(\vec{x})} \dot{p}(\vec{x}, t)\right)
\end{equation}\]

If we use the approximation

(149)\[\begin{equation}
\frac{\partial \phi(\vec{x}, t)}{\partial t} = \frac{\phi(\vec{x}, t+\Delta t) - \phi(\vec{x}, t)}{\Delta t},
\end{equation}\]

then we can update the porosity after advancing the solution \(\Delta t\) using

(150)\[\begin{equation}
\phi(\vec{x}, t+\Delta t) = \phi(\vec{x}, t) + \Delta t \left((\alpha(\vec{x}) - \phi(\vec{x}, t))\left(\dot{\epsilon}_v(\vec{x}, t) + \frac{1-\alpha(\vec{x})}{K_d(\vec{x})} \dot{p}(\vec{x}, t) \right) \right).
\end{equation}\]

Note

In updating the porosity state variable, we limit values to between 0 and 1, inclusively.

When updating the state variables, PETSc provides the values of the current solution as well as the auxiliary field.
Because the expression for the porosity change depends on the time derivative of the trace strain and fluid pressure, we include those subfields in the solution field.

Danger

In v4.0 we also include the velocity (time derivative of the displacement) in the solution field.
This is not necessary, so we plan to remove it in v5.0.

Our full set of governing equations is

(151)\[\begin{gather}
% Solution
\vec{s}^T = (\vec{u} \quad p \quad \epsilon_v \quad \vec{v} \quad \dot{p} \quad \dot{\epsilon}_v), \\
% Weak conservation of momentum
 \int_\Omega {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{f}(\vec{x},t) + \nabla {\vec{\psi}_\mathit{trial}^{u}} : -\boldsymbol{\sigma}(\vec{u},p_f) \,
 d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot \vec{\tau}(\vec{x},t) \, d\Gamma = 0, \\
% Weak conservation of mass
 \int_\Omega {\psi_\mathit{trial}^{p}} \left(\frac{\partial \zeta(\vec{u},p_f)}{\partial t} - \gamma(\vec{x},t)\right)
 + \nabla {\psi_\mathit{trial}^{p}} \cdot \left(-\vec{q}(p_f)\right) \, d\Omega + \int_{\Gamma_q} {\psi_\mathit{trial}^{p}} q_0(\vec{x},t))\, d\Gamma = 0, \text{ and } \\
% Weak vol. strain
 \int_{\Omega} {\psi_\mathit{trial}^{\epsilon_{v}}} \cdot \left(\nabla \cdot \vec{u} - \epsilon_{v} \right) d\Omega = 0\, \\
% Velocity
\frac{\partial \vec{u}}{\partial t} = \vec{v}\, \\
% Time derivative of fluid pressure
\frac{\partial p}{\partial t} = p_t\, \\
% Time derivative of trace strain
\frac{\partial \epsilon_v}{\partial t} = \epsilon_{vt}.
\end{gather}\]

Residual Pointwise Functions

In addition to the residual functions for the case in which porosity does not evolve in time, we have

(152)\[\begin{align}
% LHS velocity
 F^{v}(t,s,\dot{s}) &= \int_{\Omega} {\vec{\psi}_\mathit{trial}^{v}} \cdot {\color{blue}
 \underbrace{\color{black}\left(\frac{\partial \vec{u}}{\partial t} - \vec{v} \right)}_{\color{blue}{f^{v}_{0}}}} \, d\Omega, \\
% RHS velocity
 G^v(t,s) &= 0, \\
% LHS pressure dot
 F^{p_t}(t,s,\dot{s}) &= \int_{\Omega} {\psi_\mathit{trial}^{p_t}} \cdot {\color{blue}
 \underbrace{\color{black}\left(\frac{\partial p}{\partial t} - p_t \right)}_{\color{blue}{f^{p_t}_{0}}}} \, d\Omega, \\
% RHS pressure dot
 G^{p_t}(t,s) &= 0, \\
% LHS trace strain dot
 F^{\epsilon_{vt}}(t,s,\dot{s}) &= \int_{\Omega} {\psi_\mathit{trial}^{\epsilon_{vt}}} \cdot {\color{blue}
 \underbrace{\color{black}\left(\frac{\partial \epsilon_v}{\partial t} - \epsilon_{vt} \right)}_{\color{blue}{f^{\epsilon_{vt}}_{0}}}} \, d\Omega, \\
% RHS trace strain dot
 G^{\epsilon_{vt}}(t,s) &= 0.
\end{align}\]

Jacobian Pointwise Functions

The corresponding additional Jacobian functions are

(153)\[\begin{align}
% JF_vu
 J_F^{vu} &= \frac{\partial F^v}{\partial u} + s_{tshift} \frac{\partial F^v}{\partial \dot{u}} = s_{tshift}, \\
% JF_vv
 J_F^{vv} &= \frac{\partial F^v}{\partial v} + s_{tshift} \frac{\partial F^v}{\partial \dot{v}} = -1, \\
% JF_pdotp
 J_F^{p_t p} &= \frac{\partial F^{p_t}}{\partial p} + s_{tshift} \frac{\partial F^{p_t}}{\partial \dot{p}} = s_{tshift}, \\
% JF_pdotpdot
 J_F^{p_t p_t} &= \frac{\partial F^{p_t}}{\partial {p_t}} + s_{tshift} \frac{\partial F^{p_t}}{\partial \dot{p}_t} = -1, \\
% JF_edpte
 J_F^{\epsilon_{vt} \epsilon_v} &= \frac{\partial F^{\epsilon_{vt}}}{\partial \epsilon_v} + s_{tshift} \frac{\partial F^{\epsilon_{vt}}}{\partial \dot{\epsilon}_t} = s_{tshift}, \\
% JF_edotedot
 J_F^{\epsilon_{vt} \epsilon_{vt}} &= \frac{\partial F^{\epsilon_{vt}}}{\partial {\epsilon_{vt}}} + s_{tshift} \frac{\partial F^{\epsilon_{vt}}}{\partial \dot{\epsilon}_{vt}} = -1, \\
\end{align}\]

Dynamic

TODO @rwalkerlewis

This section will need to be updated for consistency with the dynamic prescribed slip formulation.

For compatibility with PETSc TS algorithms, we want to turn the second order elasticity equation into two first order equations.
We introduce velocity as a unknown, \(\vec{v}=\frac{\partial u}{\partial t}\), which leads to a slightly different three field problem,

(154)\[\begin{gather}
% Solution
\vec{s}^{T} = \left(\vec{u} \quad p \quad \vec{v}\right) \\
% Displacement
\frac{\partial \vec{u}}{\partial t} = \vec{v} \text{ in } \Omega \\
% Pressure
\frac{\partial \zeta(\vec{u},p)}{\partial t } - \gamma(\vec{x},t) + \nabla \cdot \vec{q}(p) = 0 \text{ in } \Omega \\
% Velocity
\rho_{b} \frac{\partial \vec{v}}{\partial t} = \vec{f}(\vec{x},t) + \nabla \cdot \boldsymbol{\sigma}(\vec{u},p) \text{ in } \Omega \\
% Neumann traction
\boldsymbol{\sigma} \cdot \vec{n} = \vec{\tau}(\vec{x},t) \text{ on } \Gamma_{\tau} \\
% Dirichlet displacement
\vec{u} = \vec{u}_{0}(\vec{x}, t) \text{ on } \Gamma_{u} \\
% Neumann flow
\vec{q} \cdot \vec{n} = q_{0}(\vec{x}, t) \text{ on } \Gamma_{q} \\
% Dirichlet pressure
p = p_{0}(\vec{x},t) \text{ on } \Gamma_{p}
\end{gather}\]

For compatibility with PETSc TS explicit time stepping algorithms, we need the left hand side to be \(F = (t,s,\dot{s}) = \dot{s}\).
We replace the variation of fluid content variable, \(\zeta\), with its definition in the conservation of fluid mass equation and solve for the rate of change of pressure,

(155)\[\begin{gather}
 \frac{\partial}{\partial t}\left(\alpha \epsilon_{v} + \frac{p}{M}\right) - \gamma\left(\vec{x},t\right) + \nabla \cdot \vec{q} = 0 \\
 \alpha \dot{\epsilon}_{v} + \frac{\dot{p}}{M} - \gamma \left(\vec{x},t\right) + \nabla \cdot \vec{q} = 0 \\
 \frac{\dot{p}}{M} = \gamma \left(\vec{x},t \right) - \alpha \dot{\epsilon}_{v} -\nabla \cdot \vec{q} \\
 \frac{\dot{p}}{M} = \gamma \left(\vec{x},t \right) - \alpha \left(\nabla \cdot \dot{\vec{u}} \right) -\nabla \cdot \vec{q}.
\end{gather}\]

We write the volumetric strain in terms of displacement, because this dynamic formulation does not include the volumetric strain as an unknown.
Note that for poroelastodynamics we use the generalized Darcy’s law [Ding et al., 2013] as

(156)\[\begin{equation}
 \vec{q}(p) = -\frac{\boldsymbol{k}}{\mu_{f}}(\nabla p - \vec{f}_f + \rho_{f} \frac{\partial \vec{v}}{\partial t}),
\end{equation}\]

where the generalized Darcy’s law adds the term \(\rho_{f} \frac{\partial \vec{v}}{\partial t}\).
Using trial functions \({\vec{\psi}_\mathit{trial}^{u}}\), \({\psi_\mathit{trial}^{p}}\), and \({\vec{\psi}_\mathit{trial}^{v}}\), and incorporating the Neumann boundary conditions, the weak form may be written as:

(157)\[\begin{align}
 % Displacement
 \int_{\Omega} {\vec{\psi}_\mathit{trial}^{u}} \cdot \left(\frac{\partial \vec{u}}{\partial t} \right)d \Omega &= \int_{\Omega} {\vec{\psi}_\mathit{trial}^{u}} \cdot \left(\vec{v} \right) d \Omega \\
 % Pressure
 \int_{\Omega} {\psi_\mathit{trial}^{p}} \left(\frac{1}{M}\frac{\partial p}{\partial t} \right) d\Omega &=
 \int_{\Omega} {\psi_\mathit{trial}^{p}} \left[\gamma(\vec{x},t) - \alpha \left(\nabla \cdot \dot{\vec{u}}\right) \right] + \nabla {\psi_\mathit{trial}^{p}} \cdot \vec{q}(p) \ d\Omega +
 \int_{\Gamma_q} {\psi_\mathit{trial}^{p}} (-q_0(\vec{x},t)) \ d\Gamma, \\
 % Velocity
 \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \left(\rho_{b} \frac{\partial
 \vec{v}}{\partial t} \right) \,
 d\Omega &= \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot \vec{f}(\vec{x},t) + \nabla {\vec{\psi}_\mathit{trial}^{v}} :
 -\boldsymbol{\sigma} (\vec{u},p_f) \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}}
 \cdot \vec{\tau}(\vec{x},t) \, d\Gamma.
\end{align}\]

Residual Pointwise Functions

With explicit time stepping the PETSc TS assumes the LHS is \(\dot{s}\) , so we only need the RHS residual functions:

(158)\[\begin{align}
% Displacement
 G^u(t,s) &= \int_{\Omega} {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue} \underbrace{\color{black}\vec{v}}_{\color{blue}{\vec{g}_0^u}}} d \Omega, \\
% Pressure
 G^p(t,s) &= \int_\Omega {\psi_\mathit{trial}^{p}} {\color{blue} \underbrace{\color{black}\left(\gamma(\vec{x},t) - \alpha (\nabla \cdot \dot{\vec{u}})\right)}_{\color{blue}{g^p_0}}} + \nabla {\psi_\mathit{trial}^{p}} \cdot {\color{blue} \underbrace{\color{black}\vec{q}(p_f)}_{\color{blue}{\vec{g}^p_1}}} \, d\Omega + \int_{\Gamma_q} {\psi_\mathit{trial}^{p}} ({\color{blue} \underbrace{\color{black}-q_0(\vec{x},t)}_{\color{blue}{g^p_0}}}) \, d\Gamma, \\
% Velocity
 G^v(t,s) &= \int_\Omega {\vec{\psi}_\mathit{trial}^{v}} \cdot {\color{blue} \underbrace{\color{black}\vec{f}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} + \nabla {\vec{\psi}_\mathit{trial}^{v}} : {\color{blue} \underbrace{\color{black}-\boldsymbol{\sigma}(\vec{u},p_f)}_{\color{blue}{\boldsymbol{g}^v_1}}} \, d\Omega + \int_{\Gamma_\tau} {\vec{\psi}_\mathit{trial}^{u}} \cdot {\color{blue} \underbrace{\color{black}\vec{\tau}(\vec{x},t)}_{\color{blue}{\vec{g}^v_0}}} \, d\Gamma.
\end{align}\]

Jacobians Pointwise Functions

These are the pointwise functions associated with \(M_{u}\), \(M_{p}\), and \(M_{v}\) for computing the lumped LHS Jacobian.
We premultiply the RHS residual function by the inverse of the lumped LHS Jacobian while \(s_\mathit{tshift}\) remains on the LHS with \(\dot{s}\). As a result, we use LHS Jacobian pointwise functions, but set \(s_\mathit{tshift} = 1\).
The LHS Jacobians are:

(159)\[\begin{align}
% Displacement
 M_{u} &= J_F^{uu} = \frac{\partial F^u}{\partial u} + s_{tshift} \frac{\partial F^u}{\partial \dot{u}} =
 \int_{\Omega} {\psi_\mathit{trial}^{u}}_{i} {\color{blue} \underbrace{\color{black}s_{tshift} \delta_{ij}}_{\color{blue}{J^{uu}_{f0}}}} {\psi_\mathit{basis}^{u}}_{j} \, d \Omega \\
% Pressure
 M_{p} &= J_F^{pp} = \frac{\partial F^p}{\partial p} + s_{tshift} \frac{\partial F^p}{\partial \dot{p}} =
 \int_{\Omega} {\psi_\mathit{trial}^{p}} {\color{blue} \underbrace{\color{black}\left(s_{tshift} \frac{1}{M}\right)}_{\color{blue}{J_{f0}^{pp}}}} {\psi_\mathit{basis}^{p}} \ d\Omega \\
% Velocity
 M_{v} &= J_F^{vv} = \frac{\partial F^v}{\partial v} + s_{tshift} \frac{\partial F^v}{\partial \dot{v}} =
 \int_{\Omega} {\psi_\mathit{trial}^{v}}_{i}{\color{blue} \underbrace{\color{black}\rho_{b}(\vec{x}) s_{tshift} \delta_{ij}}_{\color{blue}{J^{vv}_{f0}}}} {\psi_\mathit{basis}^{v}}_{j} \ d \Omega
\end{align}\]

Running PyLith

	Overview of Running PyLith
	Command Line Interface
	Running in Parallel on a Desktop or Laptop

	Running in Parallel on a Cluster

	Launchers and Schedulers

	Using a Job Scheduler
	LSF Batch System

	PBS Batch System

	Running without a Job Scheduler

	Defining the Simulation

	Organization of Simulation Components

	Simulation Input and Output

	Nondimensionalization

	Finite-Element Implementation User Interface
	Fields and Subfields
	Solution Field

	Auxiliary Field

	Discretization

	Setting PyLith Parameters
	Units

	Using the Command Line

	Using a .cfg File

	Using a .pml File

	Specification and Placement of Configuration Files

	PyLith Application
	Simulation Metadata

	PETSc Options
	Default PETSc Options
	Solver Options
	Quasistatic Elasticity

	Quasistatic Incompressible Elasticity

	Quasistatic Poroelasticity

	Monitoring

	Testing

	User-Specified PETSc Options
	Solver Options

	Finite-Element Mesh
	Mesh Importer
	Mesh generation with CUBIT and Gmsh
	CUBIT

	Gmsh

	2D meshing

	3D meshing

	ASCII Mesh Files - MeshIOAscii

	CUBIT (Exodus II) Mesh Files - MeshIOCubit

	Gmsh Files - MeshIOPetsc
	gmsh_utils
	GenerateMesh Application Template

	MaterialGroup

	VertexGroup

	Distribution among Processes - Distributor

	Uniform Global Refinement - Refiner

	Utilities
	pyre_doc.py

	pylith_cfgsearch

	pylith_runner

	pylith_dumpparameters

	pylith_eqinfo

	pylith_genxdmf

	pylith_powerlaw_gendb

	PyLith Parameter Viewer
	Installation

	Running the Parameter Viewer
	Generate the parameter JSON file

	Start the web server

	Using the Parameter Viewer
	Version Information

	Parameter Information

	Troubleshooting
	Tips and Hints For Running PyLith

	Common Error Messages
	Import Error and Missing Library

	Unrecognized Property ‘p4wd’

	Detected zero pivot in LU factorization

	Bus Error

	Segmentation Fault

Overview of Running PyLith

Command Line Interface

PyLith is a Python script run from the command line.
The most common way to run PyLith is to pass one or more parameter files as arguments on the command line.
For example, if the file strikeslip.cfg contains the parameters for your simulation, then run

$ pylith strikeslip.cfg

See Setting PyLith Parameters for more information about setting parameters via parameter files and the command line.

Running in Parallel on a Desktop or Laptop

You can run PyLith in parallel on a desktop or laptop using the --nodes=NPROCS command line argument, where NPROCS is the number of processes to use.
The amount of speedup you will see by running in parallel depends on the processor and memory architecture of your computer.
On most desktops and laptops, you can obtain reduced runtimes using about one-quarter to one-half of the number of physical cores.
Once you saturate the memory bus, using additional processes (cores) will result in little, if any, speedup.

Running in Parallel on a Cluster

Most clusters use a job scheduler to manage user requests for running batch jobs.
The command to submit a batch job depends upon the particular job scheduler being used.
Further, the command used in a batch script to launch an MPI program varies from one cluster to the next.
This command can vary between two clusters, even if the clusters use the same job scheduling system!
On some systems, mpirun is invoked directly from the batch script.
On others, a special wrapper is used instead.

Launchers and Schedulers

Most job schedulers require you to write a shell script to launch a job.
Pyre’s launcher and scheduler facilities can generate the shell script and submit the job for you.
Many properties associated with launcher and scheduler depend on the cluster you are using, and are best set in a configuration file.
You can put these settings in your personal PyLith configuration file ($HOME/.pyre/pylithapp/pylithapp.cfg).

Pyre’s scheduler facility is used to specify the type of job scheduler system you are using (if any):

[pylithapp]
The valid values for scheduler are 'lsf", 'pbs', 'globus', and 'none.
scheduler = lsf
Pyre's launcher facility is used to specify the MPI implementation.
The valid values for launcher include 'mpich' and 'lam-mpi'.
launcher = mpich

You may find the ‘dry’ option useful while debugging the launcher and scheduler configuration.
This option causes PyLith to perform a “dry run,” dumping the batch script or mpirun command to the console, instead of actually submitting it for execution (the output is only meaningful if you’re using a batch system).

Listing 1 Display the bash script that would be submitted.

$ pylith --scheduler.dry
Display the mpirun command.
$ pylith --launcher.dry

Using a Job Scheduler

Many clusters use some implementation of a PBS (e.g., TORQUE/Maui) or LSF batch system.
The examples below illustrate use of some of the more important settings.
You may need to make use of more options or adjust these to submit jobs on various cluster.
These settings are usually placed in $HOME/.pyre/pylithapp/pylithapp.cfg or in a system-wide configuration file.
They can be overridden on the command line, where one typically specifies the number of compute nodes and number of processes per compute node, the job name, and the allotted time for the job:

$ pylith example1.cfg \
--job.queue=debug \
--job.name=example1 \
--job.stdout=example1.log \
--job.stderr=example1.err \
--job.walltime=5*minute \
--nodes=4

Important

The value for nodes is equal to the number of compute nodes times the number of processes (usually the number of cores) requested per compute node.
Specifying the number of processes per compute node depends on the batch system.
For more information on configuring Pyre for your batch system, see CIG’s Pythia page https://geodynamics.org/resources/pythiaXX/.

LSF Batch System

[pylithapp]
scheduler = lsf
the type of batch system

[pylithapp.lsf]
bsub-options = [-a mpich_gm]
special options for 'bsub'

[pylithapp.launcher]
command = mpirun.lsf
'mpirun' command to use on our cluster

[pylithapp.job]
queue = normal
default queue for jobs

PBS Batch System

[pylithapp]
scheduler = pbs
the type of batch system

[pylithapp.pbs]
shell = /bin/bash
submit the job using a bash shell script

Export all environment variables to the batch job
Send email to johndoe@mydomain.org when the job begins, ends, or aborts
qsub-options = -V -m bea -M johndoe@mydomain.org

[pylithapp.launcher]
command = mpirun -np ${nodes} -machinefile ${PBS_NODEFILE}

For most PBS batch systems you can specify N processes per compute node via the command line argument --scheduler.ppn=N.

Running without a Job Scheduler

On a cluster without a job scheduler, you need to explicitly specify the compute nodes on which the job will run.
Supposing the compute nodes on your cluster are named n001, n002, …, etc., and you want to run the job on machines n001, n003, n004, and n005 (maybe n002 is down for the moment).
To run an example, create a file named mynodes.cfg which specifies the compute nodes to use:

[pylithapp.launcher]
nodegen = n%03d
nodelist = [1,3-5]

The nodegen property is a printf-style format string, used in conjunction with nodelist to generate the list of compute node names.
The nodelist property is a comma-separated list of values in square brackets.

Now, invoke the following:

$ pylith example.cfg mynodes.cfg

This strategy gives you the flexibility to create an assortment of cfg files (with one cfg file for each list of compute nodes) which can be easily paired with different parameter files.

If your list of compute nodes does not change often, you may find it more convenient to specify default values for nodegen and nodelist in $HOME/.pyre/pylithapp/pylithapp.cfg (which is read automatically).
Then, you can run any simulation with no additional arguments:

$ pylilth example.cfg

Warning

This assumes your list of compute nodes has enough computational resources for the simulation in question.

You will notice that a machine file mpirun.nodes is generated.
It will contain a list of the nodes where PyLith has run.

Defining the Simulation

The parameters for PyLith are specified as a hierarchy or tree of components.
The application assembles the hierarchy of components from user input and then calls the main function in the top-level module in the same manner as a C or C++ program.
The behavior of the application is determined by the components included in the hierarchy as specified by the user.
The Pyre framework provides the interface for defining this hierarchy.
PyLith Components includes detailed descriptions of the components provided by PyLith.
Pyre properties correspond to simple settings in the form of strings, integers, and real numbers.
Pyre facilities correspond to software modules. Facilities may have their own facilities (branches in the tree) and any number of properties.
See Fig. 3 for the general concept of Pyre facilities and properties.

Organization of Simulation Components

The components in a PyLith simulation generally fall into four main categories:

	Topology
	Components associated with the spatial discretization of the domain, such as the finite-element mesh;

	Physics
	Components specifying the physics to be solved, such as materials associated with a governing equation, bulk rheologies, boundary conditions, and fault interface conditions;

	Physics Implementation
	Components that perform the finite-element operations, such as integration of the residual and system Jacobian; and

	Observers
	Components that get notified of updates to the solution and state variables, such as writers for saving the solution to a file.

The physics components provide the point-wise functions (kernels) used by the physics implementation components, the auxiliary field, and the layout of the derived field (subfields computed from the auxiliary field and solution, such as stress and strain).

Simulation Input and Output

Fig. 6 shows the inputs and outputs for a PyLith simulation.
The user supplies:

	Mesh information. This includes the topology of the finite-element mesh (coordinates of vertices and how the vertices are connected into cells), a material identifier for each cell, and sets of vertices associated with boundary conditions, faults, and output (for subsets of the mesh). This information can be provided using the PyLith mesh ASCII format (see PyLith Mesh ASCII File for the format specification) or by importing the information from CUBIT or Gmsh mesh generation software (see Finite-Element Mesh for more information).

	A set of parameters describing the problem. These parameters describe the type of problem to be run, solver information, time-stepping information, boundary conditions, materials, etc. This information can be provided from the command-line or by using a cfg file.

	Spatial databases specifying the values for the material properties and boundary conditions. Arbitrarily complex spatial variations in boundary and fault conditions and material properties may be given in the spatial database (see Examples and Spatialdata Documentation [https://spatialdata.readthedocs.io].

PyLith writes solution information, such as solution fields and state variables, to either VTK files or HDF5/Xdmf files using the observer components.
ParaView and Visit as well as several other visualization tools can read both types of files.
Post-processing of output is generally performed using HDF5 files accessed via a Python script and the h5py package or a Matlab script.

[image: Diagram of a PyLith simulation]
Fig. 6 PyLith requires a finite-element mesh (three different mechanisms for generating a mesh are currently supported), simulation parameters, and spatial databases (defining the spatial variation of various parameters).
PyLith writes the solution output to either VTK or HDF5/Xdmf files, which can be visualized with ParaView or Visit. Post-processing is generally done using the HDF5 files with Python or Matlab scripts.

Nondimensionalization

PyLith scales all parameters provided by the user so that the simulation solves the equations using nondimensional quantities.
This permits application of PyLith to problems across a vast range of spatial and temporal scales.
The scales used to nondimensionalize the problem are length, pressure, density, and time. SpatialData provides two normalizer objects to make it easy to provide reasonable scales for quasi-static and dynamic elasticity boundary value problems.
See https://spatialdata.readthedocs.io/en/latest/user/nondimensionalization.html for details.

Finite-Element Implementation User Interface

In specifying simulation parameters, some details of the finite-element implementation using the PETSc DMPlex is exposed to the user.
In this section we describe the data structures to give the user greater context for understanding what the parameters mean.

Tip

See Code Layout for a detailed discussion of the we organize the PyLith code.

Fields and Subfields

Finite-element coefficients for the finite-element basis functions (sometimes thought of as the values at vertices, on edges and faces, or in cells) are stored in a Field.
A Field is composed of a Section, which associates the points (vertices, edges, faces, and cells) with the finite-element coefficients, and a Vec, which is a vector storing the finite-element coefficients.
A Field may hold a single subfield, such as displacement, or it may hold several subfields, such as the density, shear modulus, and bulk modulus for an isotropic, linear elastic material.

Spatial discretization is specified for each subfield.
That is, each subfield within a Field can have a different discretization.
For example, a displacement field may use a second order discretization while a pressure field may use a first order discretization.
If we have uniform material properties, we use a zero order discretization (uniform values within a cell) to reduce the storage requirements.

The two main types of fields are the solution field and auxiliary fields.

Solution Field

The solution field contains all of the finite-element coefficients corresponding to the problem solution.
As discussed in the multiphysics finite-element formulation in Finite-Element Formulation with PETSc, if the governing equations have multiple unknowns, such as displacement and fluid pressure for poroelasticity, then the solution field will have multiple subfields.
See Solution component for details of the user interface and predefined containers for common subfield collections.

Auxiliary Field

We specify parameters for materials, boundary conditions, and fault interfaces using fields we refer to as the “auxiliary” field.
Each parameter (scalar, vector, tensor, or other) is held in a separate subfield.
We also store state variables in the auxiliary field, with each state variable as a different subfield.
This provides a single container for the collection of spatially varying parameters while maintaining the flexibility to specify the discretization of each parameter separately.

Discretization

The discretization of a field is given in terms of the topology (vertices, edges, faces, and cells) associated with the field and the basis order and quadrature order.
The basis order refers to the highest order in the basis functions.
For example, a basis order of 0 has just a constant and a basis order of 2 for a polynomial basis has constant, linear, and quadratic terms.

Warning

Currently, the quadrature order MUST be the same for all subfields in a simulation.
This restriction may be relaxed in the future.
PyLith verifies that the quadrature order is the same for all subfields, and it will indicate if a subfield has a quadrature order that does not match the quadrature order of the first solution subfield.

Setting PyLith Parameters

There are several methods for setting input parameters for the pylith executable: via the command line or by using a text file in cfg or pml format.
Both facilities and properties have default values provided, so you only need to set values when you want to deviate from the default behavior.

Units

All dimensional parameters require units.
The units are specified using Python syntax, so square meters is m**2.
Whitespace is not allowed in the string, for units and dimensioned quantities are multiplied by the units string; for example, two meters per second is 2.0*m/s.
Available units are shown in Table 7.

Table 7 Pyre supported units. Aliases are in parentheses.

	Scale

	Available Units

	length

	meter (m), micrometer (um, micron), millimeter (mm), centimeter (cm), kilometer (km), inch, foot, yard, mile

	time

	second (s), nanosecond (ns), microsecond (us), millisecond (ms), minute, hour, day, year

	mass

	kilogram (kg), gram (g), centigram (cg), milligram (mg), ounce, pound, ton

	pressure

	pascal (Pa), kPa, MPa, GPa, bar, millibar, atmosphere (atm)

Using the Command Line

The --help command line argument displays links to useful resources for learning PyLith.

Pyre uses the following syntax to change properties from the command line.
To change the value of a property of a component, use --COMPONENT.PROPERTY=VALUE.
Each component is attached to a facility, so the option above can also be written as --FACILITY.PROPERTY=VALUE.
Each facility has a default component attached to it.
A different component can be attached to a facility by --FACILITY=NEW_COMPONENT.

PyLith’s command-line arguments can control Pyre and PyLith properties and facilities, MPI settings, and PETSc settings.
You can get a list of all of these top-level properties along with a description using the --help-properties command-line argument.
To get information on user-configurable facilities and components, use the --help-components command-line argument.
To find out about the properties associated with a given component, use the --COMPONENT.help-properties} command-line argument.

$ pylith --problem.help-properties

Show problem components.
$ pylith --problem.help-components

Show bc components (bc is a component of problem).
$ pylith --problem.bc.help-components

Show bc properties.
$ pylith --problem.bc.help-properties

Using a .cfg File

Entering more than a few parameters via the command line is cumbersome.
You will generally find it easier to collect parameters into a cfg file.
The file is composed of one or more sections which are formatted as follows:

[pylithapp.COMPONENT1.COMPONENT2]
This is a comment.

FACILITY3 = COMPONENT3
PROPERTY1 = VALUE1
PROPERTY2 = VALUE2

Tip

We strongly recommend that you use cfg files for your work.
The files are syntax-highlighted in most editors, such as vim, Emacs, Atom, and VS Code.

Using a .pml File

A pml file is an XML file that specifies parameter values in a highly structured format.
It is composed of nested sections which are formatted as follows:

<component name="COMPONENT1">
 <component name="COMPONENT2">
 <property name="PROPERTY1">VALUE1</property>
 <property name="PROPERTY2">VALUE2</property>
 </component>
</component>

XML files are intended to be read and written by machines, not edited manually by humans.
The pml file format is intended for applications in which PyLith input files are generated by another program, e.g., a GUI, web application, or a high-level structured editor.
This file format will not be discussed further here, but if you are interested in using pml files, note that pml files and cfg files can be used interchangeably; in the following discussion, a file with a pml extension can be substituted anywhere a cfg file can be used.

Specification and Placement of Configuration Files

Configuration files may be specified on the command line:

$ pylith example.cfg

In addition, the Pyre framework searches for configuration files named pylithapp.cfg in several predefined locations.
You may put settings in any or all of these locations, depending on the scope you want the settings to have:

	$PREFIX/etc/pylithapp.cfg for system-wide settings;

	$HOME/.pyre/pylithapp/pylithapp.cfg for user settings and preferences; and

	./pylithapp.cfg, for local settings.

All of the example problems are set up using configuration files and specific problems are defined by including the appropriate configuration file on the command-line.

Important

The Pyre framework will search these directories for cfg files matching the names of components (for example, timedependent.cfg, faultcohesivekin.cfg, greensfns.cfg, etc) and will attempt to assign all parameters in those files to the respective component.

Important

Parameters given directly on the command line will override any input contained in a configuration file.
Configuration files given on the command line override all others.
The pylithapp.cfg files placed in (3) will override those in (2), (2) overrides (1), and (1) overrides only the built-in defaults.

Tip

See Utilities and PyLith Parameter Viewer for several helpful utilities for viewing PyLith parameters and finding examples using specific features.

PyLith Application

The top-level object is the PyLith application with five facilities:

	metadata:

	Simulation metadata;

	petsc:

	PETSc settings.

	mesher:

	Importer for the finite-element mesh;

	problem:

	Problem to run, including materials, boundary conditions, etc.; and

	dump_parameters:

	Dump parameters used and version information to file.

The mesher facility handles getting the finite-element mesh information, such as importing a mesh from a file.
The problem facility defines of the boundary value problem to solve and contains the most information.
It defines the finite-element discretization, materials, faults, initial conditions, boundary conditions, and output.

See also

PyLithApp Component

Simulation Metadata

Note

New in v3.0.0

We use metadata to provide a concise summary of a simulation.
The metadata gives structure to information previously placed in comments within the parameter files while also making this information machine readable.
The metadata makes it possible for a Python script to launch an entire suite of simulations and search for simulation parameter files based on the metadata content (see Utilities for more information).
For example, users can search examples that use a given feature.

At a minumum the metadata must include: (1) a description, (2) the command line arguments necessary to run the simulation, and (3) the PyLith version(s) that are compatible with the input files.
We strongly encourage users to include all of the metadata in their own PyLith parameter files.

See also

SimulationMetadata Component

PETSc Options

PyLith relies on PETSc for finite-element data structures, linear and nonlinear solvers, and time-stepping algorithms.
PETSc has its own object-oriented interface for specifying runtime options.
PyLith provides two mechanisms for passing options to PETSc:

	Default values that are controlled by a few flags in the PyLith Problem petsc_defaults facility, and

	PyLith petsc facility which passes options directly to PETSc.

When using the default values, PyLith selects solver and preconditioner options based on the governing equations.
In most cases these default values will give good performance and you do not need to specify any PETSc options.
The user-specified values always take precedence over the default values.

Default PETSc Options

Note

New in v3.0.0

We separate the defaults into a few categories to make it easy to select desired options.

	solver:

	Options for the preconditioner and solver;

	parallel:

	Options used when running in parallel (can be used in serial as well);

	monitors:

	Options for basic monitoring of the solver; and

	testing:

	Options used in testing.

Tip

You can see which options PyLith sets using the petscoptions Pyre Journal.
Either use the --journal.info.petscoptions command line argument or in your .cfg file include

[journal.info]
petscoptions = 1

See also

See PetscDefaults Component for more information about the the Pyre interface for specifying default PETSc options.

Solver Options

The solver options are enabled by default.
PyLith selects options based on the governing equation, formulation, presence of a fault, and whether the simulation is running in parallel.
In most cases the options used when running in parallel give comparable or better performance than those used when running serial; consequently, you may want to use them when solving moderate to larger problems in serial.
Additionally, PyLith specifies general options related to the solver tolerances and triggering errors if the linear or nonlinear solver fails to converge.
The different sets of defaults are detailed in the following code blocks.

Warning

The split fields and algebraic multigrid preconditioning currently fails in problems with a nonzero null space.
This most often occurs when a problem contains multiple faults that extend through the entire domain and create subdomains without any Dirichlet boundary conditions.
The workaround is to use the ilu preconditioner.
However, it only works in serial.
An alternative is to use the asm preconditioner (Additive Schwarz) which works in parallel and serial.

Listing 2 PETSc options set whenever the solver defaults are enabled.

[pylithapp.petsc]
ksp_rtol = 1.0e-12
ksp_atol = 1.0e-12
ksp_error_if_not_converged = true

snes_rtol = 1.0e-12
snes_atol = 1.0e-9
snes_error_if_not_converged = true

Quasistatic Elasticity

Listing 3 PETSc options used for quasistatic elasticity in serial without a fault.

[pylithapp.petsc]
ts_type = beuler
pc_type = lu

Listing 4 PETSc options used for quasistatic elasticity in parallel without a fault.

[pylithapp.petsc]
ts_type = beuler
pc_type = gamg

The Lagrange multiplier corresponding to the tractions on the fault introduces a saddle point in the system of equations, so we use a Schur complement approach.

Listing 5 PETSc options used for quasistatic elasticity in serial with a fault.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_use_amat = true
pc_fieldsplit_type = schur

pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0

fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_pc_type = lu

fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_pc_type = lu

Listing 6 PETSc options used for quasistatic elasticity in parallel with a fault.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_use_amat = true
pc_fieldsplit_type = schur

pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0

fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_pc_type = ml

fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_pc_type = ml

Listing 7 Alternative options for quasistatic elasticity with a fault that often provide similar performance.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_use_amat = true
pc_fieldsplit_type = schur

pc_fieldsplit_schur_factorization_type = full
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0

fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_pc_type = gamg
fieldsplit_displacement_mg_levels_pc_type = sor
fieldsplit_displacement_mg_levels_ksp_type = richardson

fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_pc_type = gamg
fieldsplit_lagrange_multiplier_fault_mg_levels_pc_type = sor
fieldsplit_lagrange_multiplier_fault_mg_levels_ksp_type = richardson

Quasistatic Incompressible Elasticity

The pressure field introduces a saddle point in the system of equations, so we use a Schur complement approach.

Listing 8 PETSc options used for quasistatic incompressible elasticity in serial.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_fieldsplit_type = schur

pc_fieldsplit_schur_factorization_type = full
pc_fieldsplit_schur_precondition = full

fieldsplit_displacement_pc_type = lu
fieldsplit_pressure_pc_type = lu

Listing 9 PETSc options used for quasistatic incompressible elasticity in parallel.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_fieldsplit_type = schur

pc_fieldsplit_schur_factorization_type = full
pc_fieldsplit_schur_precondition = full

fieldsplit_displacement_pc_type = gamg
fieldsplit_displacement_mg_levels_pc_type = sor
fieldsplit_displacement_mg_levels_ksp_type = richardson
fieldsplit_pressure_pc_type = gamg
fieldsplit_pressure_mg_levels_pc_type = sor
fieldsplit_pressure_mg_levels_ksp_type = richardson

Quasistatic Poroelasticity

Listing 10 PETSc options used for quasistatic poroelasticity in serial.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_fieldsplit_type = multiplicative
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
fieldsplit_trace_strain_pc_type = bjacobi
fieldsplit_pressure_pc_type = bjacobi
fieldsplit_displacement_pc_type = lu

Listing 11 PETSc options used for quasistatic poroelasticity in parallel.

[pylithapp.petsc]
pc_type = fieldsplit
pc_fieldsplit_type = multiplicative
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
fieldsplit_trace_strain_pc_type = bjacobi
fieldsplit_pressure_pc_type = bjacobi
fieldsplit_displacement_pc_type = ml
fieldsplit_displacement_ksp_type = gmres

Listing 12 PETSc options used for quasistatic poroelasticity with a porosity state variable in serial. The second set of parameters are the additional parameters needed for the additional solution subfields.

[pylithapp.petsc]
ts_type = beuler
pc_type = fieldsplit
pc_fieldsplit_type = multiplicative
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
fieldsplit_trace_strain_pc_type = bjacobi
fieldsplit_pressure_pc_type = bjacobi
fieldsplit_displacement_pc_type = lu

pc_fieldsplit_3_fields = 3
pc_fieldsplit_4_fields = 4
pc_fieldsplit_5_fields = 5
fieldsplit_velocity_pc_type = bjacobi
fieldsplit_pressure_t_pc_type = bjacobi
fieldsplit_trace_strain_t_pc_type = bjacobi

[pylithapp.petsc]
pc_type = fieldsplit
pc_fieldsplit_type = multiplicative
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
fieldsplit_trace_strain_pc_type = bjacobi
fieldsplit_pressure_pc_type = bjacobi
fieldsplit_displacement_pc_type = ml
fieldsplit_displacement_ksp_type = gmres

pc_fieldsplit_3_fields = 3
pc_fieldsplit_4_fields = 4
pc_fieldsplit_5_fields = 5
fieldsplit_velocity_pc_type = bjacobi
fieldsplit_pressure_t_pc_type = bjacobi
fieldsplit_trace_strain_t_pc_type = bjacobi

Monitoring

The monitoring options are enabled by default and provide a few lines of output per time step summarizing the operation of the linear and nonlinear solvers and time stepping.
Additional monitoring can be turned on using the user-specified options.

Listing 13 Default PETSc options for monitoring.

Turn off monitoring options (enabled by default).
[pylithapp.problem.petsc_defaults]
monitoring = False

Corresponding PETSc options
[pylithapp.petsc]
ksp_converged_reason = true

snes_converged_reason = true
snes_monitor = true

ts_monitor = tru
ts_error_if_step_fails = true

Testing

The options in the testing category are intended for use in internal testing.
These options help identify memory leaks in PETSc data structures and inconsistent back traces.

Listing 14 Default PETSc options for testing.

Turn on testing options (turned off by default).
[pylithapp.problem.petsc_defaults]
testing = True

Corresponding PETSc options
[pylithapp.petsc]
malloc_dump = true

User-Specified PETSc Options

Table 8 shows the main monitoring options offered by PETSc.
When optimizing and troubleshooting solver options, we usually turn on all the monitoring.

Table 8 Description of PETSc monitoring options

	Option

	Description

	log_view

	Show logging objects and events.

	ts_monitor

	Show time-stepping progress.

	ksp_monitor

	Show preconditioned residual norm.

	ksp_view

	Show linear solver parameters.

	ksp_error_if_not_converged

	Generate an error if linear solver does not converge.

	ksp_converged_reason

	Indicate why iterating stopped in linear solve.

	snes_monitor

	Show residual norm for each nonlinear solve iteration.

	snes_view

	Show nonlinear solver parameters.

	snes_error_if_not_converged

	Generate an error if nonlinear solver does not converge.

	snes_converged_reason

	Indicate why iterating stopped in nonlinear solve.

	snes_linesearch_monitor

	Show line search information in nonlinear solve.

Solver Options

For most problems we use the GMRES method from Saad and Schultz [1986] for the linear solver; this is the linear solver PETSc uses as the default.
See PETSc linear solver table [https://petsc.org/release/docs/manual/ksp/#tab-kspdefaults] for a list of PETSc options for linear solvers and preconditioners.

Tip

It is important to keep in mind the resolution of the model and observations when setting solver tolerances.
For example, matching observations with an accuracy of 1.0 mm does not require solving the equations to an accuracy of 0.0001 mm.

Table 9 Summary of PETSc solver tolerances.

	Option

	Description

	ksp_rtol

	Stop iterating when the preconditioned KSP residual norm has this amount relative to its starting value.

	ksp_atol

	Stop iterating when the preconditioned KSP residual normal is smaller than this value.

	snes_rtol

	Stop iterating when the SNES residual norm has this amount relative to its starting value.

	snes_atol

	Stop iterating when the SNES residual normal is smaller than this value.

Finite-Element Mesh

The finite-element mesh specifies the geometry and topology of the discretization.
It must be generated using external software before running PyLith.
PyLith supports triangular and quadrilateral cells in 2D and tetrahedral and hexahedral cells in 3D.
The vertex ordering must follow the convention shown in Fig. 7 and Fig. 8.
The cells define the geometry of the domain; the basis order and quadrature order used to discretize the solution subfields are specified separately.

The mesh information specifies the vertex coordinates and the vertices composing each cell in the mesh.
The mesh information must also define at least one set of vertices for which displacement (Dirichlet) boundary conditions will be provided.
In most realistic problems, there will be several vertex groups, each with a unique identifying label.
For example, one group might define a surface of the mesh where displacement (Dirichlet) boundary conditions will be applied, another might define a surface where traction (Neumann) boundary conditions will be applied, while a third might specify a surface that defines a fault.
Similarly, the mesh information contains cell labels that define the material type for each cell in the mesh.
For a mesh with a single material type, there will only be a single label for every cell in the mesh.
See Materials and Boundary Conditions for more detailed discussions of setting the materials and boundary conditions.

[image: 2D cell types]
Fig. 7 Cells available for 2D problems are the triangle and the quadrilateral.

[image: 3D cell types]
Fig. 8 Cells available for 3D problems are the tetrahedron and the hexahedron.

Mesh Importer

The default component for the PyLithApp mesher facility is MeshImporter, which provides the capabilities of reading the finite-element mesh from files.
The MeshImporter includes a facility for reordering the mesh.
Reordering the mesh so that vertices and cells connected topologically reside close together in memory improves overall performance.

Pyre User Interface

See MeshImporter component

PyLith supports reading meshes generated by CUBIT (Exodus II files) and Gmsh.
We have implemented our own readers for Exodus II files.
For Gmsh files we use the reader included in PETSc; PETSc also supports several other formats, but they have not been tested for use with PyLith.
Currently, PyLith requires that boundary conditions be specified by marking vertices and all materials are marked by the same label material-id with different label values for each material.
The PyLith readers create the labels from the mesh input files.

Mesh generation with CUBIT and Gmsh

CUBIT and Gmsh can generate quadrilateral or triangular meshes in 2D and hexahedral or tetrahedral meshes in 3D.
In each case, you first create the geometry, specify the meshing algorithm and discretization size, and then generate the mesh.
You can build up the geometry from points, curves, surfaces, and volumes or use the geometry engines to construct the domain using simple shapes.

CUBIT

We have tended to construct CUBIT meshes using journal files and leverage the CUBIT APREPRO scripting language.
CUBIT also provides a Python interface, but you must use the Python interpreter provided with CUBIT.
The functionality of the two interfaces is quite similar, although one could argue that the Python interface leverages a more complete development experience through a commonly used programming language.

Gmsh

We only recently started using Gmsh and have only used the Python interface.
Gmsh also offers a simple scripting language, similar to CUBIT journal files.
The Gmsh Python interface integrates well with the rest of Python; it can be installed so that it is compatible with the Python interpreter used by PyLith.
This means one can leverage additional Python packages, such as geographic projection libraries.
Gmsh includes its own geometry engine as well as an interface to the Open CASCADE engine.

Warning

Gmsh does not construct quadrilateral or hexahedral meshes directly; instead, it first constructs a triangular or tetrahedral mesh and then combines triangles or tetrahedra to form quadrilaterals or hexahedra.

Sometimes it will not be able to remove all triangular or hexahedral cells, resulting in meshes with multiple shapes, which PyLith does not support.

2D meshing

Constructing surfaces from points and curves for 2D meshing with CUBIT and Gmsh is very similar.
CUBIT provides more geometric operations than Gmsh, but many simple geometric operations in Gmsh can be implemented by the user when using the Python interface.
Gmsh includes a simple yet powerful interface for specifying the discretization size.
Generating unstructured quadrilateral meshes for complex geometry is often easier in CUBIT, whereas generating meshes with complex specification of discretization size is often easier with Gmsh.

3D meshing

CUBIT provides an extensive suite of tools for constructing complex 3D geometry.
This includes building surfaces and performing geometric operations on surfaces and volumes.
The suite of tools in the Gmsh geometry engine is more limited; the Open CASCADE engine interface provides additional tools.
With either CUBIT or Gmsh, you can use external CAD tools to generate the geometry.
As in the case with 2D meshing, generating unstructure hexahedral meshes is often easier in CUBIT, whereas generating meshes with complex specification of discretization size is often eaiser in Gmsh.

ASCII Mesh Files - MeshIOAscii

The MeshIOAscii object is intended for reading small, simple ASCII files containing a mesh constructed by hand.
We use this file format extensively in small tests.
PyLith Mesh ASCII File describes the format of the files.

Table 10 Translation of ASCII mesh “tags” to PyLith mesh ‘label’ and ‘label_value’.

	MeshIOAscii entity

	label

	label_value

	material-ids

	material-id (hardwired)

	value

	Group name

	name

	1 (default)

Pyre User Interface

MeshIOAscii Component

CUBIT (Exodus II) Mesh Files - MeshIOCubit

The MeshIOCubit object reads the NetCDF Exodus II files output from CUBIT.
Beginning with CUBIT 11.0, the names of the nodesets are included in the Exodus II files and PyLith can use these nodeset names or revert to using the nodeset ids.

Table 11 Translation of CUBIT mesh “tags” to PyLith mesh ‘label’ and ‘label_value’.

	CUBIT entity

	label

	label_value

	Material block

	material-id (hardwired)

	Block value

	Nodeset

	Nodeset name

	1 (default)

Pyre User Interface

MeshIOCubit Component

Warning

There are two versions of CUBIT: Sandia National Laboratory provides a version to U.S. government agencies, and Coreform provides another version to all other users.
The two verisions used to be essentially the same, but the differences have started to grow.
We strive to provide CUBIT Journal scripts that work with both versions without modification, but this is becoming more difficult.

Please be aware that we cannot guarantee that all CUBIT Journal files will work with all versions of CUBIT. You may need to make small adjustments (usually updating geometry ids) to get them to work with the version of CUBIT you are using.

Gmsh Files - MeshIOPetsc

The MeshIOPetsc object supports reading a variety of mesh formats.
We have only thoroughly tested this interface using Gmsh files.

Table 12 Translation of Gmsh mesh “tags” to PyLith mesh ‘label’ and ‘label_value’.

	Gmsh entity

	label

	label_value

	Material physical groups

	material-id (hardwired)

	tag

	Boundary condition physical groups

	Physical group name

	tag

Important

The Gmsh file must end in .msh for the reader to recognize that it is a Gmsh file.

Tip

You can view the mesh quality in Gmsh using Tools→Statistics.
We prefer the condition number quality metric, which Gmsh provides as SICN (signed inverse of the condition number).
Click on 3D next to SICN to color the cells by mesh quality.
Click on Plot to view the cumulative distribution of the metric over the cells.

Pyre User Interface

MeshIOPetsc Component

gmsh_utils

In Gmsh we use physical groups to associate cells with materials and mark entities for boundary conditions and faults.
The names of physical groups for materials must follow the syntax material-id:TAG, where TAG is the tag of the physical group.
PyLith includes a Python module pylith.meshio.gmsh_utils to make it easy to generate a PyLith compatible Gmsh file.

The function create_material() generates physical groups following the required naming convention of material-id:TAG given the tag and names of entities.
Similarly, the function create_group() will construct physical groups for boundary conditions and faults compatible with PyLith.

The physical groups for boundary conditions and faults must include entities at the topological dimension of the boundary condition as well as all lower dimensions.
For example, for a boundary condition on curves a physical group must include the entities on the curves as well as the vertices defining the curves.
For a boundary condition on surfaces a physical group must include the entities on the surfaces as well as the curves and vertices defining the surfaces.

GenerateMesh Application Template

The gmsh_utils module also includes a application template object (Python abstract base class) called GenerateMesh for writing Python scripts that generate meshes using Gmsh.
The application template defines the steps for generating the mesh with a separate function (to be implemented by the user) for each step:

	initialize(): Initialize Gmsh;

	create_geometry(): Create the geometry (implemented in user application);

	mark(): Create physical groups for boundary conditions, faults, and materials (implemented in user application);

	generate_mesh(): Generate the finite-element mesh (implemented in user application);

	write(): Save the mesh to a file; and

	finalize(): Start the Gmsh graphical user interface, if requested, and then finalize Gmsh.

The command line arguments specify which step(s) to run, the output filename, and whether to invoke the Gmsh graphical user interface upon completing the steps:

	--geometry:

	Generate the geometry by calling create_geometry().

	--mark:

	Create physical groups by calling mark().

	--generate:

	Generate the mesh by calling generate_mesh().

	--write:

	Save the mesh by calling write().

	--name:

	Name of the mesh in Gmsh (default=”mesh”).

	--filename=FILENAME:

	Name of output mesh file (default=”mesh.msh”).

	--ascii:

	Write mesh to ASCII file (default is binary).

	--cell=[tri,quad,tet,hex]:

	Generate mesh with specified cell type.

	--gui:

	Start the Gmsh graphical user interface after running steps.

The application template always calls the initialize() and finalize() methods.
Additionally, the application will run any prerequisite steps.
For example, specifying --generate will trigger creating the geometry and physical groups before generating the mesh.

The application is discussed in more detail in the examples.

MaterialGroup

MaterialGroup is a Python data class that holds information about a physical group associated with a material.
The data members include:

	tag (int):

	Integer tag for the physical group.

	entities (list):

	List (array) of entities for the material.

The MaterialGroup data class include a method create_physical_group() that will create a physical group from the information in the MaterialGroup.

VertexGroup

VertexGroup is a Python data class that holds information about a physical group associated with a boundary or fault.
The data members include:

	name (str):

	Name for the physical group.

	tag (int):

	Integer tag for the physical group.

	dim (int):

	Dimension of the entities (0=points, 1=curves, 2=surfaces)

	entities:

	List (array) of entities for the boundary condition or fault.

The VertexGroup data class include a method create_physical_group() that will create a physical group from the information in the VertexGroup.

Distribution among Processes - Distributor

The distributor uses a partitioner to compute which cells should be placed on each processor, computes the overlap among the processors, and then distributes the mesh among the processors.
The type of partitioner is set via PETSc settings.

Note

METIS/ParMETIS are not included in the PyLith binaries due to licensing issues.

Pyre User Interface

Distributor Component

Uniform Global Refinement - Refiner

The refiner is used to decrease node spacing by a power of two by recursively subdividing each cell by a factor of two.
In a 2D triangular mesh a node is inserted at the midpoint of each edge, splitting each cell into four cells (see Fig. 9).
In a 2D quadrilateral mesh a node is inserted at the midpoint of each edge and at the centroid of the cell, splitting each cell into four cells.
In a 3D tetrahedral mesh a node is inserted at the midpoint of each edge, splitting each cell into eight cells.
In a 3D hexahedral mesh a node is inserted at the midpoint of each edge, the centroid of each face, and at the centroid of the cell, splitting each cell into eight cells.

[image: Global refinement]
Fig. 9 Global uniform mesh refinement of 2D and 3D linear cells.
The blue lines and orange circles identify the edges and vertices in the original cells.
The purple lines and green circles identify the new edges and vertices added to the original cells to refine the mesh by a factor of two.

Refinement occurs after distribution of the mesh among processors.
This allows one to run much larger simulations by (1) permitting the mesh generator to construct a mesh with a node spacing larger than that needed in the simulation and (2) operations performed in serial during the simulation setup phase, such as, adjusting the topology to insert cohesive cells and distribution of the mesh among processors uses this much smaller coarse mesh.
For 2D problems the global mesh refinement increases the maximum problem size by a factor of \(4^{n}\), and for 3D problems it increases the maximum problem size by a factor of \(8^{n}\), where \(n\) is the number of recursive refinement levels.
For a tetrahedral mesh, the element quality decreases with refinement so \(n\) should be limited to 1-2.

Utilities

The PyLith distribution contains several utilities for working with PyLith simulations and processing output.
These Python scripts are all installed into the same bin directory as the pylith application with the exception of the pyre_doc.py script which is installed as part of Pythia/Pyre.

	pyre_doc
	Display the Pyre properties and facilities available for a given component.

	pylith_cfgsearch
	Search and display metadata in .cfg files.

	pylith_runner
	Run all PyLith simulations in a given path.

	pylith_dumpparameters
	Dump simulation parameters, including default values, to a file for viewing.

	pylith_eqinfo
	Compute earthquake rupture metrics from PyLith output.

	pylith_genxdmf
	Generate Xdmf files from HDF5 files written by PyLith.

	pylith_powerlaw_gendb
	Generate a spatial database with power-law bulk rheology parameters for PyLith.

pyre_doc.py

Note

New in v3.0.0

This utility is part of the Pythia/Pyre framework.
It will be installed to the bin directory where Pythia/Pyre is installed.
This utility extracts the Python docstrings and help information for Pyre components.

Warning

This utility does not work on the PyLithApp application object because it is a mpi.Application object.

pyre_doc.py [--help] [--short] OBJECT

	–help:

	Display help information for script.

	–short:

	Display only the docstrings for the specified module or object. The default is to display the information for the specified object and all child objects, such as classes within a module.

	OBJECT:

	Full path to Python module or object, such as pylith.problems.Problem (module) or pylith.problems.Problem.Problem (object).

Listing 15 Example of running pyre_doc.py on pylith.problems.Problem

$ pyre_doc.py pylith.problems.Problem
No help available for module pylith.problems.Problem.

class Problem
Python abstract base class for crustal dynamics problems.

 FACTORY: problem

facilities of 'problem':
 bc=<component name>: Boundary conditions.
 current value: 'emptybin', from {default}
 configurable as: emptybin, bc
 defaults=<component name>: Default options for problem.
 current value: 'problem_defaults', from {default}
 configurable as: problem_defaults, defaults
 gravity_field=<component name>: Database used for gravity field.
 current value: 'nullcomponent', from {default}
 configurable as: nullcomponent, gravity_field
 interfaces=<component name>: Interior surfaces with constraints or constitutive models.
 current value: 'emptybin', from {default}
 configurable as: emptybin, interfaces
 materials=<component name>: Materials in problem.
 current value: 'homogeneous', from {default}
 configurable as: homogeneous, materials
 normalizer=<component name>: Nondimensionalizer for problem.
 current value: 'nondimelasticquasistatic', from {default}
 configurable as: nondimelasticquasistatic, normalizer
 solution=<component name>: Solution field for problem.
 current value: 'solution', from {default}
 configurable as: solution
 solution_observers=<component name>: Observers (e.g., output) for solution.
 current value: 'singlesolnobserver', from {default}
 configurable as: singlesolnobserver, solution_observers
properties of 'problem':
 formulation=<str>: Formulation for equations.
 default value: 'quasistatic'
 current value: 'quasistatic', from {default}
 validator: (in ['quasistatic', 'dynamic', 'dynamic_imex'])
 help=<bool>: prints a screen that describes my traits
 default value: False
 current value: False, from {default}
 help-components=<bool>: prints a screen that describes my subcomponents
 default value: False
 current value: False, from {default}
 help-persistence=<bool>: prints a screen that describes my persistent store
 default value: False
 current value: False, from {default}
 help-properties=<bool>: prints a screen that describes my properties
 default value: False
 current value: False, from {default}
 solver=<str>: Type of solver to use ['linear', 'nonlinear'].
 default value: 'linear'
 current value: 'linear', from {default}
 validator: (in ['linear', 'nonlinear'])

pylith_cfgsearch

Note

New in v3.0.0

This utility searches and displays the metadata in .cfg files based on criteria provided via the command line.

pylith_cfgsearch [--help] [--path SEARCHPATH] [--display DISPLAY] [--verbose] [--keywords KEYWORDS]
 [--features FEATURES] [--authors AUTHORS] [--version VERSION] [--incompatible]

	–help:

	Display help information for script.

	–path SEARCHPATH:

	Search path for .cfg files (default: ./).

	–display DISPLAY:

	List of metadata to display in search results (default: all).

	–keywords KEYWORDS:

	Comma delimited list of keywords for filtering search results (default: None).

	–features FEATURES:

	Comma delimited list of features for filtering search results (default: None).

	–authors AUTHORS:

	Comma delimited list of authors for filtering search results (default: None).

	–version VERSION:

	PyLith version for filtering search results (default: None).

	–verbose:

	Report missing metadata (default: False).

	–incompatible:

	Filter search results to show incompatible parameter files (default: False).

Listing 16 Example of running pylith_cfgsearch in examples/strikeslip-2d.

$ pylith_cfgsearch
step01_slip.cfg v1.0.0; requires PyLith >=3.0 and <4.0
 Coseismic prescribed slip with zero displacement Dirichlet boundary conditions.
 Authors: Brad Aagaard
 Keywords: example, 2D, strike slip, prescribed slip
 Features:
 Triangular cells, pylith.meshio.MeshIOCubit, pylith.problems.TimeDependent, pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity, pylith.faults.FaultCohesiveKin, pylith.faults.KinSrcStep, field split
 preconditioner, Schur complement preconditioner, pylith.bc.DirichletTimeDependent, spatialdata.spatialdb.UniformDB,
 pylith.meshio.OutputSolnBoundary, pylith.meshio.DataWriterHDF5, Static simulation
 pylith step01_slip.cfg
step02_slip_velbc.cfg v1.0.0; requires PyLith >=3.0 and <4.0
 Coseismic prescribed slip with velocity Dirichlet boundary conditions.
 Authors: Brad Aagaard
 Keywords: example, 2D, strike slip, prescribed slip, velocity boundary conditions
 Features:
 Triangular cells, pylith.meshio.MeshIOCubit, pylith.problems.TimeDependent, pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity, pylith.faults.FaultCohesiveKin, pylith.faults.KinSrcStep, field split
 preconditioner, Schur complement preconditioner, pylith.bc.DirichletTimeDependent, spatialdata.spatialdb.UniformDB,
 pylith.meshio.OutputSolnBoundary, pylith.meshio.DataWriterHDF5, Quasi-static simulation, spatialdata.spatialdb.SimpleDB
 pylith step02_slip_velbc.cfg
step03_multislip_velbc.cfg v1.0.0; requires PyLith >=3.0 and <4.0
 Coseismic prescribed slip with multiple ruptures and velocity Dirichlet boundary conditions.
 Authors: Brad Aagaard
 Keywords: example, 2D, strike slip, prescribed slip, multiple fault ruptures, velocity boundary conditions
 Features:
 Triangular cells, pylith.meshio.MeshIOCubit, pylith.problems.TimeDependent, pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity, pylith.faults.FaultCohesiveKin, pylith.faults.KinSrcStep, field split
 preconditioner, Schur complement preconditioner, pylith.bc.DirichletTimeDependent, spatialdata.spatialdb.UniformDB,
 pylith.meshio.OutputSolnBoundary, pylith.meshio.DataWriterHDF5, Quasi-static simulation, spatialdata.spatialdb.SimpleDB
 pylith step03_multislip_velbc.cfg

Listing 17 Example of running pylith_cfgsearch in examples/strikeslip-2d, limiting output to the description and keywords.

$ pylith_cfgsearch --display=description,keywords
step01_slip.cfg
 Coseismic prescribed slip with zero displacement Dirichlet boundary conditions.
 Keywords: example, 2D, strike slip, prescribed slip
step02_slip_velbc.cfg
 Coseismic prescribed slip with velocity Dirichlet boundary conditions.
 Keywords: example, 2D, strike slip, prescribed slip, velocity boundary conditions
step03_multislip_velbc.cfg
 Coseismic prescribed slip with multiple ruptures and velocity Dirichlet boundary conditions.
 Keywords: example, 2D, strike slip, prescribed slip, multiple fault ruptures, velocity boundary conditions

Listing 18 Example of running pylith_cfgsearch in examples/strikeslip-2d, filtering search results to quasistatic simulations.

$ pylith_cfgsearch --features="Quasi-static simulation"
step02_slip_velbc.cfg v1.0.0; requires PyLith >=3.0 and <4.0
 Coseismic prescribed slip with velocity Dirichlet boundary conditions.
 Authors: Brad Aagaard
 Keywords: example, 2D, strike slip, prescribed slip, velocity boundary conditions
 Features:
 Triangular cells, pylith.meshio.MeshIOCubit, pylith.problems.TimeDependent, pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity, pylith.faults.FaultCohesiveKin, pylith.faults.KinSrcStep, field split
 preconditioner, Schur complement preconditioner, pylith.bc.DirichletTimeDependent, spatialdata.spatialdb.UniformDB,
 pylith.meshio.OutputSolnBoundary, pylith.meshio.DataWriterHDF5, Quasi-static simulation, spatialdata.spatialdb.SimpleDB
 pylith step02_slip_velbc.cfg
step03_multislip_velbc.cfg v1.0.0; requires PyLith >=3.0 and <4.0
 Coseismic prescribed slip with multiple ruptures and velocity Dirichlet boundary conditions.
 Authors: Brad Aagaard
 Keywords: example, 2D, strike slip, prescribed slip, multiple fault ruptures, velocity boundary conditions
 Features:
 Triangular cells, pylith.meshio.MeshIOCubit, pylith.problems.TimeDependent, pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity, pylith.faults.FaultCohesiveKin, pylith.faults.KinSrcStep, field split
 preconditioner, Schur complement preconditioner, pylith.bc.DirichletTimeDependent, spatialdata.spatialdb.UniformDB,
 pylith.meshio.OutputSolnBoundary, pylith.meshio.DataWriterHDF5, Quasi-static simulation, spatialdata.spatialdb.SimpleDB
 pylith step03_multislip_velbc.cfg

pylith_runner

Note

New in v3.0.0

The runner utility searches a directory path for .cfg files with arguments in the simulation metadata (see PyLith Application for details).
It uses those arguments to run PyLith simulations.

Important

The runner utility only knows how to run PyLith simulations, it does not know how to do pre- or post-processing.

pylith_runner [--help] [--path SEARCHPATH] [--verbose]

	–help:

	Display help information for script.

	–path SEARCHPATH:

	Search path for .cfg files (default: ./).

	–verbose:

	Report missing metadata (default: False).

Listing 19 Example of using pylith_runner to run all simulations in examples/box-2d (output omitted).

$ pylith_runner --path=examples/box-2d

pylith_dumpparameters

This utility dumps all PyLith parameters collected from cfg files, the command line, and any other sources, into a file.
The output file can be a simple text file or a JSON file.
The JSON file can be viewed using the PyLith Parameter Viewer.

pylith_dumpparameters [--quiet] [--format=ascii|json] [--filnemame=FILENAME]

	–quiet:

	Don’t include description, location, or aliases in output.

	–format=ascii|json:

	Format of output file (default=json).

	–filename=FILENAME:

	Name of output file.

pylith_eqinfo

This utility computes the moment magnitude, seismic moment, seismic potency, and average slip at user-specified time snapshots from PyLith fault HDF5 output.
The utility works with output from simulations with either prescribed slip and/or spontaneous rupture.
Currently, we compute the shear modulus from a user-specified spatial database at the centroid of the fault cells. In the future we plan to account for lateral variations in shear modulus across the fault when calculating the seismic moment.
The Python script is a Pyre application, so its parameters can be specified using cfg and command line arguments just like PyLith.

The Pyre properties and facilities include:

	output_filename:

	Filename for output of slip information.

	faults:

	Array of fault names.

	filename_pattern:

	Filename pattern in C/Python format for creating filename for each fault. Default is output/fault_\%s.h5.

	snapshots:

	Array of timestamps for slip snapshosts ([-1] means use last time step in file, which is the default).

	snapshot_units:

	Units for timestamps in array of snapshots.

	db_properties:

	Spatial database for elastic properties.

	coordsys:

	Coordinate system associated with mesh in simulation.

pylith_genxdmf

This utility generates Xdmf files from HDF5 files that conform to the layout used by PyLith.
It is a simple Python script with a single command line argument with the file pattern of HDF5 files for which Xdmf files should be generated.
Typically, it is used to regenerate Xdmf files that get corrupted or lost due to renaming and moving.
It is also useful in updating Xdmf files when users add fields to HDF5 files during post-processing.

pylith_genxdmf --files=FILE_OR_FILE_PATTERN

The default value for FILE_OR_FILE_PATTERN is *.h5.

Warning

If the HDF5 files contain external datasets, then this utility should be run from the same relative path to the HDF5 files as when they were created.
For example, if a PyLith simulation was run from directory work and HDF5 files were generated in output/work, then the utility should be run from the directory work.
Furthermore, a visualization tool, such as ParaView, should also be started from the working directory work.

pylith_powerlaw_gendb

This Pyre application generates a SimpleDB spatial database file with power-law viscoelastic material properties for use with PyLith.
The inputs are spatial databases with values often available from laboratory experiments, such as activation energy, temperature, power-law coefficient, and the power-law exponent.
An additional parameter defines the units of the activation energy.
You must also specify either a reference stress or a reference strain rate.

You place all of the application parameters in powerlaw_gendb.cfg, which the application will read by default.
See Step 8: Slip on Two Faults and Power-law Viscoelastic Materials for an example of how to use pylith_powerlaw_gendb.

PyLith Parameter Viewer

Note

New in v2.2.0

The PyLith Parameter Viewer provides a graphical user interface for viewing the parameters associated with a PyLith simulation and the version information for PyLith and its dependencies.
This viewer is an updated and interactive interface to the information generated by the pylith_dumpparameters script.
It displays the hiearchy of components and the parameters for each one, including default values.

Installation

The PyLith Parameter Viewer is included in the PyLith binary distributions and PyLith Docker container for versions 2.1.5 and later.
Additionally, the PyLith Installer will install the Parameter Viewer by default.
For manual installation you can download the PyLith Parameter Viewer tarball from the PyLith software page https://geodynamics.org/resources/pylith/supportingdocs/.
After downloading the tarball, unpack it.
We recommend unpacking the tarball in the top-level PyLith directory.

$ tar -xvf pylith_parameters-1.1.0.tgz

Running the Parameter Viewer

The steps to run the parameter viewer are:

	Generate the parameter JSON file.

	Start the web server (if not already running).

	Load the parameter JSON file.

Generate the parameter JSON file

The parameter viewer uses a JSON file with all of the parameters collected from cfg files, command line arguments, etc as input.
This file can be generated using pylith_dumpparameters) and, by default, it will be generated whenever a PyLith simulation is run.
When using pylith_dumpparameters the name of the parameter file can be set via a command line argument.
When using PyLith the DumpParametersJSON component contains a property for the name of the file.
You can set the filename on the command line

$ pylith --dump_parameters.filename=FILENAME.json

or within a cfg file

[pylithapp.dump_parameters]
filename = FILENAME.json

Currently, the JSON parameter file cannot be used to run a PyLith simulation.
This feature will be added in an upcoming release.

Start the web server

Change to the directory containing the pylith_paramviewer script (usually the parametersgui directory under the top-level pylith directory), and run the pylith_paramviewer script.
This will start a simple Python-based web server on your local computer.
Alternatively, you can use the online version at https://geodynamics.github.io/pylith_parameters/.

$ cd parametersgui
$./pylith_paramviewer

The script will instruct you to point your web browswer to a local port on your computer.
The default is http://127.0.0.1:9000.
You can change the default port using the --port command line argument to the pylith_paramviewer script.

Using the Parameter Viewer

When you point your web browser to the correct port, you should see the PyLith Parameter Viewer as shown in Fig. 10.
Click the Choose File button and navigate to the desired JSON parameter file.
The viewer tarball includes a sample parameter file sample_parameters.json.
Click the Reload button to reload the same JSON parameter file if you regenerate it.
To select a new JSON parameter file, click the Choose File button and navigate to the desired file.

[image: Parameter Viewer screenshot at startup]

Fig. 10 Screenshot of PyLith Parameter Viewer in web browser upon startup.

Version Information

Click on the Version tab to examine the version information.
This tab displays the same version information shown with the --version command line argument to pylith in an easy to read layout.
This includes information about the platform on which pylith or pylith_dumpparameters was run, the PyLith version, and versions of the dependencies, as shown in Fig. 11.

[image: Parameter Viewer screenshot of version information]

Fig. 11 Screenshot of Version tab of the PyLith Parameter Viewer with sample JSON parameter file.

Parameter Information

Click on the Parameters tab to examine the hiearchy of components and the parameters for each.
You can expand/collapse the Component Hierarchy tree in the left panel by clicking on the triangles or facility name in blue to the left of the equals sign (Fig. 12).
Clicking on the component in red to the right of the equals sign will show its parameters in the right panel (Fig. 12).
The selected facility in the left panel whose parameters are shown in the right panel will be highlighted via a gray background (Fig. 13).

[image: Parameter Viewer screenshot of parameter information]

Fig. 12 Screenshot of Parameters tab of the PyLith Parameter Viewer with sample JSON parameter file before selecting a component in the left panel.

[image: Parameter Viewer screenshot of parameter information with component selected]

Fig. 13 Screenshot of Parameters tab of the PyLith Parameter Viewer with sample JSON parameter file with the z_neg facility selected.

Troubleshooting

Tips and Hints For Running PyLith

	Examine the examples for a problem similar to the one you want to run and dissect it in detail.

	Start with a uniform-resolution coarse mesh to debug the problem setup. Increase the resolution as necessary to resolve the solution fields of interest (resolving stresses/strains may require a higher resolution than that for resolving displacements).

	Merge materials using the same material model. This will result in only one VTK or HDF5 file for each material model rather than several files.

	The rate of convergence in quasistatic (implicit) problems can sometimes be improved by renumbering the vertices in the finite-element mesh to reduce the bandwidth of the sparse matrix. PyLith can use the reverse Cuthill-McKee algorithm to reorder the vertices and cells.

	If you encounter errors or warnings, run pylith_dumpparameters or use the --help, --help-components, or --help-properties command-line arguments when running PyLith to check the parameters to make sure PyLith is using the parameters you intended.

	Use the --petsc.log_view, --petsc.ksp_monitor, --petsc.ksp_view, --petsc.ksp_converged_reason, and --petsc.snes_converged_reason command-line arguments (or set them in a parameter file) to view PyLith performance and monitor the convergence.

	Turn on the journals (see the examples) to monitor the progress of the code.

See Troubleshooting (2D) for examples of how to troubleshoot running PyLith simulations.
Also consult the PyLith category in the CIG community forum [https://community.geodynamics.org] to see if someone else encountered a similar issue.

Common Error Messages

Import Error and Missing Library

ImportError: liblapack.so.2: cannot open shared object file: No such file or directory

PyLith cannot find one of the libraries.
You need to set up your environment variables (e.g., PATH, PYTHONPATH, and LD_LIBRARY_PATH) to match your installation.
If you are using the PyLith binary on Linux or macOS, run the command source setup.sh in the directory where you unpacked the distribution.
This will set up your environment variables for you.
If you are building PyLith from source, please consult the instructions for building from source.

Unrecognized Property ‘p4wd’

-- pyre.inventory(error) } \\
-- p4wd <- 'true' } \\
-- unrecognized property 'p4wd' } \\
>> command line:: } \\
-- pyre.inventory(error) } \\
-- p4pg <- 'true' } \\
-- unrecognized property ' p4pg'}

Verify that the mpirun command included in the PyLith package is the first one on your PATH by running the command which mpirun.
If it is not, adjust your PATH environment variable accordingly.

Detected zero pivot in LU factorization

-- Solving equations.
[0] PETSC ERROR: ----------------
Error Message -------------------------------
[0] PETSC ERROR: Detected zero pivot in LU factorization
see http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html\#ZeroPivot!

This usually occurs when the null space of the system Jacobian is nonzero, such as the case of a problem without Dirichlet boundary conditions on any boundary or a portion of a domain disconnected from boundary conditions by faults.
If this arises and no additional Dirichlet boundary conditions are desired, then the workaround is to change the preconditioner from LU to ILU.
See PETSc Options for additional information.

Bus Error

This often indicates that PyLith is using incompatible versions of libraries.
This can result from changing your environment variables after configuring or installing PyLith (when building from source) or from errors in setting the environment variables PATH, LD_LIBRARY_PATH, and PYTHONPATH).
If the former case, simply reconfigure and rebuild PyLith.
In the latter case, check your environment variables (order matters!) to make sure PyLith finds the desired directories before system directories.

Segmentation Fault

A segmentation fault usually results from an invalid read/write to memory.
It might be caused by an error that wasn’t trapped or a bug in the code.
Please report these cases so that we can fix these problems (either trap the error and provide the user with an informative error message, or fix the bug).
If this occurs with any of the problems distributed with PyLith, simply submit a bug report (see Getting Help and Reporting Bugs) indicating which problem you ran and your platform.

Important

PETSc will often report errors as semgentation faults even if the underlying problem is not an invalid read/write.
If you see PETSc reporting a segmentation fault, examine the output carefully for other error messages that indicate the real issue is something else.

If the crash occurs for a problem you created, it is a great help if you can try to reproduce the crash with a very simple problem (e.g., adjust the boundary conditions or other parameters of one of the examples to reproduce the segmentation fault).
Submit a bug report along with log files showing the backtrace from a debugger (e.g., gdb) and the valgrind log file (only available on Linux platforms).
You can generate a backtrace using the debugger by using the --petsc.start_in_debugger command-line argument:

$ pylith [..args..] --petsc.start_in_debugger
(gdb) continue
(gdb) backtrace

To use valgrind to detect the memory error, first go to your working directory and run the problem with --launcher.dry:

$ pylith [..args..] --launcher.dry

Instead of actually running the problem, this causes PyLith to dump the mpirun/mpiexec command it will execute.
Copy and paste this command into your shell so you can run it directly.
Insert the full path to valgrind before the full path to mpinemesis and tell valgrind to use a log file:

$ mpirun /path/to/valgrind --log-file=valgrind-log /path/to/mpinemesis --pyre-start
 [..lots of junk..]

Defining Simulations

	Types of Simulations
	Time-Dependent Problem (TimeDependent)
	Initial Conditions
	InitialConditionDomain

	InitialConditionPatch

	Numerical Damping in Explicit Time Stepping

	Green’s Functions Problem (GreensFns)

	Output
	Progress Monitors
	ProgressMonitorTime

	ProgressMonitorStep

	Observers
	Output Observers

	Solution Observers
	Output at Discrete Points

	PointsList Reader

	Physics Observer

	Data Writers
	HDF5 Output
	HDF5 Utilities

	VTK Output

	Output Triggers
	Decimate by time step

	Decimate by time

Types of Simulations

PyLith currently supports two types of problems:

	Time dependent, and

	Static Green’s functions.

Time-Dependent Problem (TimeDependent)

This type of problem solves a time-dependent boundary value problem and applies to static, quasistatic, and dynamic simulations.
We use the PETSc object to manage the time-stepping, including the selection of the time-stepping algorithm.
By default PyLith uses the backward Euler time-stepping algorithm.

Pyre User Interface

See TimeDependent Component for Pyre properties and facilities and configuration examples.

Initial Conditions

Note

New in v3.0.0.

The initial conditions for a simulation are specified via a combination of initial values for the solution and initial values for state variables.
The initial values for state variables are specified via the spatial databases for the auxiliary field of each material.
In this section we discuss how to set the initial values of the solution field.

InitialConditionDomain

We use this object when we want to specify the initial values of solution subfields across the entire domain using a single spatial database.

Pyre User Interface

See InitialConditionDomain Component for Pyre properties and facilities and configuration examples.

InitialConditionPatch

We use this object when we want to specify the initial values of solution subfields across patches of the domain defined by materials.

Important

Initial conditions over a patch currently only work for Gmsh input files.
Exodus II files from Cubit do not contain the information needed by the current PyLith implementation.

In creating the physical group in Gmsh, you must include the cells and all lower dimension entities (faces, edges, and vertices).
The easiest way to do this is to use the VertexGroup provided in the pylith.meshio.gmsh_utils Python module.
By default, the lower dimension entities will be included in the physical group.

Pyre User Interface

See InitialConditionPatch Component for Pyre properties and facilities and configuration examples.

Numerical Damping in Explicit Time Stepping

Danger

Not yet reimplemented in v3.x.

Green’s Functions Problem (GreensFns)

This type of problem applies to computing static Green’s functions for elastic deformation.
The GreensFns problem loops over a suite of fault slip impulses and computes the static solution for each impulse using the linear solver.
In the output files, the deformation at each “time step” is the deformation for a different slip impulse.
The fault slip impulses are specified using FaultCohesiveImpulses for the fault.
See Fault Slip Impulses (FaultCohesiveImpulses) for more information.

Warning

The GreensFns problem generates slip impulses on a fault.
PyLith currently requires that impulses be applied to a single fault of type FaultCohesiveImpulses.

Pyre User Interface

See GreensFns Component for Pyre properties and facilities and configuration examples.

Output

PyLith produces four kinds of output:

	Information written to stdout (default) or other devices that is controlled by the Pyre journal settings;

	Information written to stdout that is controlled by PETSc options;

	Information about the progress of the simulation written to a text file that is controlled by progress monitors (see Progress Monitors);

	Output of the solution over the domain, external boundary, or at discrete points (see Solution Observers); and

	Output of the solution or state variables over a material, interface, or external boundary (see Physics Observer).

Progress Monitors

The progress monitors make it easy to monitor the general progress of long simulations, especially on clusters where stdout is not always easily accessible.
The progress monitors update a simulation’s current progress by writing information to a text file.
The information includes time stamps, percent completed, and an estimate of when the simulation will finish.

ProgressMonitorTime

This is the default progress monitor for time-stepping problems.
The monitor calculates the percent completed based on the time at the current time step and the total simulated time of the simulation, not the total number of time steps (which may be unknown in simulations with adaptive time stepping).

See also

ProgressMonitorTime Component

ProgressMonitorStep

This is the default progress monitor for problems with a specified number of steps, such as Green’s function problems.
The monitor calculates the percent completed based on the number of steps (e.g., Green’s function impulses completed).

See also

ProgressMonitorStep Component

Observers

Observer objects manage transferring the solution and state variables to other objects, including output and external software.
Currently, the only type of observers implemented in PyLith are ones that produce output.

Output Observers

PyLith currently supports output to HDF5/Xdmf and VTK files, which can be imported directly into a number of visualization tools, such as ParaView, Visit, and MayaVi.
The HDF5 files can also be directly accessed via Matlab and Python modules, such as h5py.
PyLith v3.x supports output of the solution subfields, all auxiliary fields (material properties, boundary condition parameters, and fault interface parameters, etc.) and fields derived from the auxiliary field and/or solution, such as strain and stress.

The HDF5 writer provides parallel binary output, whereas the VTK writer provides serial ASCII output.
Additionally, with the VTK writer each time step is written to a separate file; the HDF5 writer puts all information for a given domain, boundary condition, or fault interface into a single file.

Output observers have a data writer (see Data Writers) for writing the data in a specified format and a trigger (see Output Triggers) for specifying how often to write the output in a time-dependent simulation.

Important

Fields with a basis order of 1 are written as vertex fields, whereas fields with a basis order of 0 are written as cell fields.
Fields with a basis order of 0 are kept at a basis order of 0 when output.
Fields with a basis order of 1 or more can be output with a basis order of 0 or 1.

New in v4.0.0

The output observers produce files with either diagnostic information (info files) or solution and state variable information (data files).
The default behavior is the files include all available information.
The info files include the auxiliary subfields at the beginning of the simulation along with surface orientation information for faults and boundary conditions.
The data files include all solution subfields, state variables, and derived fields (fields computed from the solution, such as Cauchy stress and strain).

For boundary conditions the orientation information is provided in terms of x, y, and z components of the unit vectors for the surface normal and tangential directions.
In 3D the “vertical” tangential direction is the cross product of the surface normal and horizontal tangential direction; it is in the +z direction for a vertical boundary.
In the case of the horizontal boundary, the horizontal tangential direction is in the +x direction and the “vertical” tangential direction is in the +y direction.
For a fault surface the horizontal tangential direction generally corresponds to the along-strike direction and the “vertical” tangential direction generally corresponds to the up-dip direction; the exception is a 2D simulation for a vertical cross-section in which the “horizontal” tangential direction corresponds to the dip direction.

The orientation information is useful for transforming from components written in terms of a surface (for example, left lateral, reverse, and opening fault tractions), into the model coordinate system (for example, the global Cartesian coordinate system).
Given unit vector components \(n_x\), \(n_y\), \(n_z\) (normal direction), \(h_x\), \(h_y\), \(h_z\) (horizontal tangential direction or along-strike direction), and \(v_x\), \(v_y\), \(v_z\) (vertical tangential direction or up-dip direction), we can transform a vector in the boundary (or fault) coordinate system (\(a_n\), \(a_h\), \(a_v\)) into the global coordinate system using

(160)\[\begin{align}
a_x &= a_n n_x + a_h h_x + a_v v_x \\
a_y &= a_n n_y + a_h h_y + a_v v_y \\
a_z &= a_n n_z + a_h h_z + a_v v_z
\end{align}\]

This transformation is useful for plotting fault tractions and slip in 3D visualization tools such as ParaView that require vectors in the model coordinate system.

Solution Observers

The solution observers get notified of updates to the solution.
Table 13 lists the current implementations of solution observers, which are used for output.

Table 13 Solution observers.

	Object

	Use Cases

	OutputSoln

	Output of the solution over the domain

	OutputSolnBoundary

	Output of the solutin over an external boundary

	OutputSolnPoints

	Output of the solution at discrete points

See also

OutputSoln Component, OutputSolnBoundary Component, and OutputSolnPoints Component.

Output at Discrete Points

In many situations with recorded observations, one would like to extract the solution at the same locations as the recorded observation.
=The locations are specified in a text file.

PointsList Reader

This object corresponds to a simple text file containing a list of points (one per line) where output is desired.
See Points List File for file format specifications.
The points are specified in the coordinate system specified by OutputSolnPoints.
The coordinates will be transformed into the coordinate system of the mesh prior to interpolation.

See also

PointsList Component

Physics Observer

Analogous to the OutputSoln objects, which provide a means to output the solution, the physics objects (material, boundary conditions, and fault interfaces) have OutputPhysics objects to provide output of the solution, properties, state variables, etc.

Data Writers

HDF5 Output

HDF5 files provide a flexible framework for storing simulation data with datasets in groups logically organized in a tree structure analogous to files in directories.
HDF5 output offers parallel, multi-dimensional array output in binary files, so it is much faster and more convenient than the VTK output which uses ASCII files and separate files for each time step.
Standards for organizing datasets and groups in HDF5 files do not exist for general finite-element software in geodynamics.
Consequently, PyLith uses its own simple layout show in Fig. 14.
In order for visualization tools, such as ParaView, to determine which datasets to read and where to find them in the hierarchy of groups within the HDF5 file, we create an Xdmf (eXtensible Data Model and Format, https://www.xdmf.org metadata file that provides this information.
This file is written when PyLith closes the HDF5 file at the end of the simulation.
In order to visualize the datasets in an HDF5 file, one simply opens the corresponding Xdmf file (the extension is xmf) in ParaView or Visit.
The Xdmf file contains the relative path to the HDF5 file so the files can be moved but must be located together in the same directory.

Important

The Xdmf format supports representation of two- and three-dimensional coordinates of points, scalar fields, and three-dimensional vector and tensor fields but not two-dimensional vector or tensor fields.
Consequently, for two-dimensional vector fields we build a three-component vector from the two-component vector (x and y components) and a separate zero scalar field (z component).
For tensor fields, we create a scalar field for each of the tensor components, adding the component as a suffix to the name of the field.

[image: Diagram of HDF5 layout]
Fig. 14 General layout of a PyLith HDF5 file.
The orange rectangles with rounded corners identify the groups and the blue rectangles with sharp corners identify the datasets.
The dimensions of the data sets are shown in parentheses.
Most HDF5 files will contain either vertex_fields or cell_fields but not both.

Table 14 General ordering and names of vector and tensor components in HDF5 output.

	Vector Field Type

	Components

	vector

	x, y, z

	tensor

	xx, yy, zz, xy, yz, xz

PyLith provides two different data writers for HDF5 files.
The DataWriterHDF5 object writes all information into the HDF5 file, whereas the DataWriterHDF5Ext object writes the data to external binary files and only the metadata to the HDF5 file.
HDF5 files do not contain self-correcting features that allow a file to be read if part of a dataset is corrupted.
This type of error can occur if a job terminates abnormally in the middle or at the end of a simulation on a large cluster or other parallel machine.
Fortunately, HDF5 also offers the ability to store datasets in external binary files with the locations specified by links in the HDF5 file.
Note that the use of external data files results in one data file per dataset in addition to the HDF5 and Xdmf files.
The external data files use the name of the HDF5 file with the dataset name added to the
prefix and the h5 suffix replaced by dat.
The HDF5 files include relative paths to the external data files, so these files can also be moved, but they, too, must be kept together in the same directory.
This provides a more robust method of output because one can generate an HDF5 file associated with the uncorrupted portions of the external data files should an error occur.
Currently, PyLith does not include a utility to do this, but we plan to add one in a future release.
Thus, there are two options when writing PyLith output to HDF5 files: (1) including the datasets directly in the HDF5 files themselves using the DataWriterHDF5 object or (2) storing the datasets in external binary files with just metadata in the HDF5 files using the DataWriterHDF5Ext object. Both methods provide similar performance because they will use MPI I/O if it is available.

Warning

Storing the datasets within the HDF5 file in a parallel simulation requires that the HDF5 library be configured with the --enable-parallel option.
The binary PyLith packages include this feature and it is a default setting in building HDF5 via the PyLith Installer.

Accessing the datasets for additional analysis or visualization is nearly identical in the two methods because the use of external data files is completely transparent to the user except for the presence of the additional files.
Note that in order for ParaView to find the HDF5 and external data files, it must be run from the same relative location where the simulation was run.
For example, if the simulation was run from a directory work and the HDF5/Xdmf files were written to work/output, then ParaView should be run from the work directory.

See also

DataWriterHDF5 Component and DataWriterHDF5Ext Component

HDF5 Utilities

HDF5 includes several utilities for examining the contents of HDF5 files.
h5dump is very handy for dumping the hierarchy, dimensions of datasets, attributes, and even the dataset values to stdout.

Dump the entire HDF5 file (not useful for large files).
$ h5dump mydata.h5

Dump the hierarchy of an HDF5 file.
$ h5dump -n mydata.h5

Dump the hierarchy with dataset dimensions and attributes.
$ h5dump -H mydata.h5

Dump dataset 'vertices' in group '/geometry' to stdout.
$ h5dump -d /geometry/vertices mydata.h5

We also provide a utility pylith_genxdmf (see {ref}`sec-user-pylith-genxdmf) that generates an appropriate Xdmf file from a PyLith HDF5 file.
This is very useful if you add fields to HDF5 files in post-processing and wish to view the results in ParaView or Visit.

VTK Output

PyLith writes legacy (non-XML) VTK files.
These are simple files with vertex coordinates, the mesh topology, and fields over vertices and/or
cells.
Each time step is written to a different file.
The time stamp is included in the filename with the decimal point removed.
This allows automatic generation of animations with many visualization packages that use VTK files.
The default time stamp is the time in seconds, but this can be changed using the normalization constant to give a time stamp in years, tens of years, or any other value.

Warning

We strongly discourage use of using VTK output.
It is slow, inefficient, and not easily read from post-processing scripts.
We strongly recommwnd using HDF5 output instead, which is the default starting in PyLith v3.0.0.

See also

DataWriterVTK Component

Output Triggers

Note

New in PyLith v3.0.0

By default PyLith will write the requested output after every time step.
In many cases we prefer to save the solution, state variables, etc at a coarser temporal resolution.
OutputTriggerStep controls the decimation of the output by time step, and OutputTriggerTime controls the decimation of the output via elasped time.
For a constant time step these can be equivalent.

Decimate by time step

OutputTriggerStep decimates the output by skipping a user-specified number of time steps.

See also

OutputTriggerStep Component

Decimate by time

OutputTriggerTime decimates the output by skipping a user-specified elasped time between output time slices.

Tip

Due to roundoff error in determining the simulation time over many time steps, a simulation may occasionally skip writing output unexpectedly when using OutputTriggerTime.
The best workaround is to use an elapsed_time that is a fraction of the time step size smaller than the desired elapsed time, such as 0.9999year instead of 1.0year.

See also

OutputTriggerTime Component

Physics Implementations

	Materials
	Specifying Material Properties

	Material Implementations
	Elasticity

	Incompressible Elasticity

	Poroelasticity

	Boundary Conditions
	Assigning Boundary Conditions

	Creating Sets of Vertices

	Arrays of Boundary Condition Components

	Diagnostic Information

	Boundary Condition Implementations
	Time-Dependent Boundary Conditions
	Time-Dependent Dirichlet Boundary Conditions

	Neumann Time-Dependent Boundary Conditions

	Absorbing Boundary Conditions

	Fault Interface Conditions
	Conventions

	Fault Implementation
	Prescribed Slip (FaultCohesiveKin)
	Prescribed Slip Parameters (KinSrc)
	Step-Function Slip Time Function (KinSrcStep)

	Constant Slip Rate Slip Time Function (KinSrcConstRate)

	Ramp Slip Time Function (KinSrcRamp)

	Brune Slip Time Function (KinSrcBrune)

	Liu-Cosine Slip Time Function (KinSrcLiuCosine)

	User-Time History Slip Time Function (KinSrcTimeHistory)

	Output

	Fault Slip Impulses (FaultCohesiveImpulses)
	Output

Materials

The material objects encapsulate the bulk behavior of the domain.
This includes both the governing equations and the associated bulk rheology.

Specifying Material Properties

Associating material properties with a given cell involves several steps.

	In the mesh generation process, assign a material identifier to each cell.

	Define material property groups corresponding to each material identifier.
In CUBIT/Trelis this is done by creating the blocks as part of the boundary conditions.

	Provide the settings for each material group in the parameters, i.e., cfg file.

	Specify the parameters for the material properties, e.g., linear variation in density with depth, using a spatial database file.
This allows variation of the material properties across cells with the same material identifier.

Material Implementations

	Elasticity

	Incompressible Elasticity

	Poroelasticity

See also

See Governing Equations for the derivation of the finite-element formulation for each of the materials.

Elasticity

You can use the Elasticity component to solve the elasticity equation with or without inertia.
Whether inertia or body forces are included is determined by the Elasticity property settings.
Gravitational body forces are included if the gravity_field is set in the Problem.
Table 15 lists the various elastic, viscoelastic, and elastoplastic bulk constitutive models implemented for the elaticity equation.

Table 15 Elasticity bulk rheologies

	Bulk Rheology

	Description

	IsotropicLinearElasticity

	Isotropic, linear elasticity

	IsotropicLinearMaxwell

	Isotropic, linear Maxwell viscoelasticity

	IsotropicLinearGenMaxwell

	Isotropic, generalized Maxwell viscoelasticity

	IsotropicPowerLaw

	Isotropic, power-law viscoelasticity

	IsotropicDruckerPrager

	Isotropic, Drucker-Prager elastoplasticity

Warning

The IsotropicDruckerPrager rheology has not yet been implemented in PyLith v3.

Table 16 Properties defining elasticity bulk rheologies

	Subfield

	L

	LM

	GM

	PL

	DP

	Components

	density

	X

	X

	X

	X

	X

	

	vp (P-wave speed)

	X

	X

	X

	X

	X

	

	vs (S-wave speed)

	X

	X

	X

	X

	X

	

	body_force

	O

	O

	O

	O

	O

	x, y, z

	gravitational_acceleration

	O

	O

	O

	O

	O

	x, y, z

	shear_modulus

	I

	I

	I

	I

	I

	

	bulk_modulus

	I

	I

	I

	I

	I

	

	reference_stress

	O

	O

	O

	O

	O

	xx, yy, zz, xy, yz, xz

	reference_strain

	O

	O

	O

	O

	O

	xx, yy, zz, xy, yz, xz

	maxwell_time

	

	I

	

	

	

	

	viscosity

	

	X

	

	

	

	

	viscosity_1

	

	

	X

	

	

	

	viscosity_2

	

	

	X

	

	

	

	viscosity_3

	

	

	X

	

	

	

	shear_ratio_1

	

	

	X

	

	

	

	shear_ratio_2

	

	

	X

	

	

	

	shear_ratio_3

	

	

	X

	

	

	

	total_strain

	

	X

	X

	X

	

	xx, yy, zz, xy, yz, xz

	viscous_strain

	

	X

	

	X

	

	xx, yy, zz, xy, yz, xz

	viscous_strain_1

	

	

	X

	

	

	xx, yy, zz, xy, yz, xz

	viscous_strain_2

	

	

	X

	

	

	xx, yy, zz, xy, yz, xz

	viscous_strain_3

	

	

	X

	

	

	xx, yy, zz, xy, yz, xz

	power_law_exponent

	

	

	

	X

	

	

	power_law_reference_strain_rate

	

	

	

	X

	

	

	power_law_reference_stress

	

	

	

	X

	

	

	deviatoric_stress

	

	

	

	X

	

	

	cohesion

	

	

	

	

	X

	

	friction_angle

	

	

	

	

	X

	

	dilatation_angle

	

	

	

	

	X

	

	alpha_yield

	

	

	

	

	I

	

	alpha_flow

	

	

	

	

	I

	

	beta

	

	

	

	

	I

	

	plastic_strain

	

	

	

	

	X

	xx, yy, zz, xy, yz, xz

X: required value in auxiliary field spatial database

O: optional value in auxiliary field spatial database

I: internal auxiliary subfield; computed from spatial database values
L: isotropic, linear elasticity

ML: isotropic linear Maxwell viscoelasticity

GM: isotropic generalized linear Maxwell viscoelasticity

PL: isotropic power-law viscoelasticity

DP: isotropic Drucker-Prager elastoplasticity

Table 17 Derived subfields that are available for output for elasticity bulk rheologies.

	Subfield

	L

	LM

	GM

	PL

	DP

	Components

	cauchy_stress

	✓

	✓

	✓

	✓

	✓

	xx, yy, zz, xy, yz, xz

	cauchy_strain

	✓

	✓

	✓

	✓

	✓

	xx, yy, zz, xy, yz, xz

See also

See Elasticity Component for the Pyre properties and facilities and configuration examples.

Incompressible Elasticity

You can use the IncompressibleElasticity component to solve the quasistatic incompressible elasticity equation.
Estimating realistic distributions of initial stress fields consistent with gravitational body forces can be quite difficult due to our lack of knowledge of the deformation history.
A simple way to approximate the lithostatic load is to solve for the stress field imposed by gravitational body forces assuming an incompressible elastic material.
This limits the volumetric deformation.
In this context we do not include inertia, so the IncompressibleElasticity component does not include an inertial term.
Gravitational body forces are included if the gravity_field is set in the Problem.
Table 18 lists the elastic bulk rheology implemented for the incompressible elaticity equation.

Table 18 Incompressible elasticity bulk rheology.

	Bulk Rheology

	Description

	IsotropicLinearincompElasticity

	Isotropic, linear incompressible elasticity

Table 19 Properties defining incompressible elasticity bulk rheologies.

	Subfield

	L

	LM

	GM

	PL

	Components

	density

	X

	X

	X

	X

	

	vp (P-wave speed)

	X

	X

	X

	X

	

	vs (S-wave speed)

	X

	X

	X

	X

	

	body_force

	O

	O

	O

	O

	x, y, z

	gravitational_acceleration

	O

	O

	O

	O

	x, y, z

	shear_modulus

	I

	I

	I

	I

	

	bulk_modulus

	I

	I

	I

	I

	

	reference_stress

	O

	O

	O

	O

	xx, yy, zz, xy, yz, xz

	reference_strain

	O

	O

	O

	O

	xx, yy, zz, xy, yz, xz

X: required value in auxiliary field spatial database

O: optional value in auxiliary field spatial database

I: internal auxiliary subfield; computed from spatial database values
L: isotropic, linear elasticity

ML: isotropic linear Maxwell viscoelasticity

GM: isotropic generalized linear Maxwell viscoelasticity

PL: isotropic power-law viscoelasticity

Table 20 Derived subfields that are available for output for incompressible elasticity bulk rheologies.

	Subfield

	L

	LM

	GM

	PL

	Components

	cauchy_stress

	✓

	✓

	✓

	✓

	xx, yy, zz, xy, yz, xz

	cauchy_strain

	✓

	✓

	✓

	✓

	xx, yy, zz, xy, yz, xz

See also

See IncompressibleElasticity Component for the Pyre properties and facilities and configuration examples.

Poroelasticity

You can use the Poroelasticity component to solve the poroelasticity equation with or without inertia.
Whether inertia or body forces are included is determined by the Poroelasticity property settings.
Gravitational body forces are included if the gravity_field is set in the Problem.
Table 21 lists the poroelastic bulk rheology implemented for the poroelaticity equation.

Table 21 Elasticity bulk rheologies.

	Bulk Rheology

	Description

	IsotropicLinearPoroelasticity

	Isotropic, linear poroelasticity

Table 22 Properties defining elasticity bulk rheologies.

	Subfield

	L

	Components

	solid_density

	X

	

	fluid_density

	X

	

	fluid_viscosity

	X

	

	porosity

	X

	

	body_force

	O

	x, y, z

	gravitational_acceleration

	O

	x, y, z

	shear_modulus

	X

	

	drained_bulk_modulus

	X

	

	biot_coefficient

	X

	

	fluid_bulk_modulus

	X

	

	solid_bulk_modulus

	X

	

	isotropic_permeability

	X

	

	tensor_permeability

	O

	xx, yy, zz, xy, yz, xz

	biot_modulus

	I

	

	reference_stress

	O

	xx, yy, zz, xy, yz, xz

	reference_strain

	O

	xx, yy, zz, xy, yz, xz

X: required value in auxiliary field spatial database

O: optional value in auxiliary field spatial database

I: internal auxiliary subfield; computed from spatial database values
L: isotropic, linear poroelasticity

Table 23 Derived subfields that are available for output for poroelasticity bulk rheologies.

	Subfield

	L

	Components

	cauchy_stress

	X

	xx, yy, zz, xy, yz, xz

	cauchy_strain

	X

	xx, yy, zz, xy, yz, xz

	bulk_density

	X

	

	water_content

	X

	

When porosity is enabled as a state variable, it will be included in the output along with the derived subfields.

See also

See Poroelasticity Component for the Pyre properties and facilities and configuration examples.

Boundary Conditions

Assigning Boundary Conditions

There are three basic steps in assigning a specific boundary condition to a portion of the domain.

	Create sets of vertices in the mesh generation process for each boundary condition.

	Set the parameters for each boundary condition group using cfg files or command line arguments.

	Specify the spatial variation in parameters for the boundary condition using a spatial database.

Creating Sets of Vertices

The procedure for creating sets of vertices differs depending on the mesh generator.
For meshes specified using the PyLith mesh ASCII format, the sets of vertices are specified using groups (see PyLith Mesh ASCII File).
In CUBIT the groups of vertices are created using nodesets.
Note that we chose to associate boundary conditions with groups of vertices because nearly every mesh generation package supports associating a string or integer with groups of vertices.
Note also that we currently associate boundary conditions with string identifiers.
Finally, note that the boundary conditions must be associated with a simply-connected surface;
that is, surfaces must be connected and not contain holes.

Arrays of Boundary Condition Components

A dynamic array of boundary condition components associates a name (string) with each boundary condition. The default boundary condition for each component in the array is DirichletTimeDependent.
Other boundary conditions can be bound to the named items in the array by assining the component type to the named boundary condition.

Listing 20 Array of boundary conditions in a cfg file

[pylithapp.problem]
Array of four boundary conditions
bc = [x_neg, x_pos, y_pos, z_neg]
Default boundary condition is DirichletBC
Keep default value for x_neg and x_pos but assign new types to y_pos and z_neg
bc.y_pos = pylith.bc.AbsorbingDampers
bc.z_neg = pylith.bc.NeumannTimeDependent

Diagnostic Information

The diagnostic information includes the outward normal direction (normal_dir) and the two tangential directions (horizontal_tangential_dir and vertical_tangential_dir).
The default basis order for discretizing these directions is 1, so these produce vertex_fields as opposed to cell_fields (basis order of 0).

Boundary Condition Implementations

	Time-Dependent Boundary Conditions
	Time-Dependent Dirichlet Boundary Conditions

	Neumann Time-Dependent Boundary Conditions

	Absorbing Boundary Conditions

See also

See Governing Equations for the derivation of the finite-element formulation for each of the boundary conditions.

Time-Dependent Boundary Conditions

Several boundary conditions use a common formulation for the spatial and temporal variation of the boundary condition parameters,

(161)\[\begin{equation}
f(\vec{x})=f_{0}(\vec{x})+\dot{f}_{1}(\vec{x})(t-t_{1}(\vec{x}))+f_{2}(\vec{x})a(t-t_{2}(\vec{x})),\
\end{equation}\]

where

	\(f(\vec{x})\):

	may be a scalar or vector parameter,

	\(f_{0}(\vec{x})\):

	is a constant value (independent of time),

	\(\dot{f}_{1}(\vec{x})\):

	is a constant rate of change in the value with time,

	\(t_{1}(\vec{x})\):

	is the onset time for the constant rate of change,

	\(f_{2}(\vec{x})\):

	is the amplitude for the temporal modulation,

	\(a(t)\):

	is the variation in amplitude with time,

	\(t_{2}(\vec{x})\):

	is the onset time for the temporal modulation, and

	\(\vec{x}\):

	is the position of a location in space.

This common formulation permits easy specification of a scalar or vector with a constant value, constant rate of change of a value, or modulation of a value in time.
One can specify just the initial value, just the rate of change of the value (along with the corresponding onset time), or just the modulation in amplitude (along with the corresponding temporal variation and onset time), or any combination of the three.

Time-Dependent Dirichlet Boundary Conditions

You can use the DirichletTimeDependent boundary conditions to prescribe a solution subfield on a boundary of the finite-element mesh.
The spatial database files for the Dirichlet boundary condition specify the parameters for the time-dependent expression.

Important

The spatial database files for Dirichlet boundary conditions must contain values for all degrees of freedom (x and y for 2-D, and x, y, and z for 3-D even if they are not constrained. This limitation is imposed by the PETSc DMPlex interface.

Table 24 Values in the auxiliary field spatial databases used for Dirichlet time-dependent boundary conditions.

	Flag

	Required Values

	use_initial

	initial_amplitude_x, initial_amplitude_y, initial_amplitude_z

	use_rate

	rate_start_time, rate_amplitude_x, rate_amplitude_y, rate_amplitude_z

	use_time_history

	time_history_start, time_history_amplitude_x, time_history_amplitude_y, time_history_amplitude_z

See also

DirichletTimeDependent Component for the Pyre properties and facilities and configuration examples.

Neumann Time-Dependent Boundary Conditions

Neumann boundary conditions are surface tractions applied over a boundary.
As with the DirichletTimeDependent condition, each Neumann boundary condition can only be applied to a simply-connected surface on an external boundary.
The spatial database file the auxiliary subfields for the Neumann boundary condition specify the parameters for the time-dependent expressions.

Table 25 Values in the auxiliary field spatial database used for Neumman time-dependent boundary conditions.

	Dimension

	Flag

	Required Values

	2

	use_initial

	initial_amplitude_normal, initial_amplitude_tangential

	

	use_rate

	rate_start_time, rate_amplitude_normal, rate_amplitude_tangential

	

	use_time_history

	time_history_start, time_history_amplitude_normal, time_history_amplitude_tangential

	3

	use_initial

	initial_amplitude_normal, initial_amplitude_tangential_1, initial_amplitude_tangential_2

	

	use_rate

	rate_start_time, rate_amplitude_normal, rate_amplitude_tangential_1, rate_amplitude_tangential_2

	

	use_time_history

	time_history_start, time_history_amplitude_normal, time_history_amplitude_tangential_1, time_history_amplitude_tangential_2

See also

NeumannTimeDependent Component for the Pyre properties and facilities and configuration examples.

Absorbing Boundary Conditions

You can use the AbsorbingDampers boundary condition to prevent seismic waves reflecting off of a boundary.
Normally incident dilatational and shear waves are perfectly absorbed.
Waves incident at other angles are only partially absorbed.
This boundary condition is simpler than a perfectly matched layer (PML) boundary condition but does not perform quite as well, especially for surface waves.
If the waves arriving at the absorbing boundary are relatively small in amplitude compared to the amplitudes of primary interest, this boundary condition gives reasonable results.

The auxiliary field spatial database contains the bulk rheology properties for an isotrpoic, linear elastic material (density, Vs (S-wave speed), and Vp (P-wave speed).
You can simply use the same spatial database that was used to specify the elastic properties of the material.

See also

See AbsorbingDampers Component for the Pyre properties and facilities and configuration examples.

See Absorbing Boundary for the derivation of the finite-element implementation of the absorbing boundary.

Fault Interface Conditions

Fault interfaces are used to create dislocations (jumps in the displacement field) in the model.
The dislocations arise from slip across a fault surface.
Both shear and tensile dislocations are supported.
Dislocations in 2D are specified in terms of left-lateral-slip and fault opening, and in 3D they are specified in terms of left-lateral-slip, reverse-slip, and fault opening.
PyLith supports kinematic (prescribed) slip and dynamic (spontaneous) rupture simulations.

Warning

Spontaneous rupture is not available in PyLith v3.0; we plan to have it reimplemented in v3.1

Conventions

Slip corresponds to relative motion across a fault surface.
Fig. 15 shows the orientation of the slip vector in 3D with respect to the fault surface and coordinate axes.
PyLith automatically determines the local orientation of the fault surface.
This alleviates the user from having to compute the strike, dip, and rake angles over potentially complex, nonplanar fault surfaces.
Instead, the user specifies fault parameters in terms of lateral motion, reverse motion, and fault opening as shown in Fig. 16.

[image: Orientation of a fault surface in 3D, where ϕ denotes the angle of the fault strike, δ denotes the angle of the fault dip, and λ the rake angle.]
Fig. 15 Orientation of a fault surface in 3D, where \(\phi\) denotes the angle of the fault strike, \(\delta\) denotes the angle of the fault dip, and \(\lambda\) the rake angle.

[image: Sign conventions associated with fault slip. Positive values are associated with left-lateral, reverse, and fault opening motions.]
Fig. 16 Sign conventions associated with fault slip.
Positive values are associated with left-lateral, reverse, and fault opening motions.

Fault Implementation

In order to create relative motion across the fault surface in the finite-element mesh, PyLith adjusts the topology of the mesh by inserting zero area (2D) or volume (3D) cohesive cells along the fault surface.
The cohesive cells allow control of the relative motion between vertices on the two sides of the fault.
Fig. 17 illustrates the results of inserting cohesive cells in a mesh consisting of triangular cells.
This example also shows the distinction between how buried fault edges are handled differently than fault edges that reach the edge of the domain, such as the ground surface.

[image: Example of cohesive cells inserted into a mesh of triangular cells. The zero thickness cohesive cells control slip on the fault via the relative motion between the vertices on the positive and negative sides of the fault.]
Fig. 17 Example of cohesive cells inserted into a mesh of triangular cells.
The zero thickness cohesive cells control slip on the fault via the relative motion between the vertices on the positive and negative sides of the fault.

[image: Example of how faults with buried edges must be described with two sets of vertices. All of the vertices on the fault are included in the `fault` group; the subset of vertices along the buried edges are included in the `fault_edge` group. In 2D the fault edges are just a single vertex as shown in {numref}`fig:fault:cohesive:cells`.]
Fig. 18 Example of how faults with buried edges must be described with two sets of vertices.
All of the vertices on the fault are included in the fault group; the subset of vertices along the buried edges are included in the fault_edge group.
In 2D the fault edges are just a single vertex as shown in Fig. 17

For faults that have buried edges, splitting the mesh apart and inserting the cohesive cells becomes complex at the buried edges due to the ambiguity of defining where the fault ends and how to insert the cohesive cell.
Starting in PyLith v2.0.0 we changed how the buried edges of the fault are managed.
An additional group of fault nodes is specified (for example, via a nodeset from CUBIT) that marks the buried edges of the fault (see Fig. 18).
This allows the cohesive cell insertion algorithm to adjust the topology so that cohseive cells are inserted up to the buried edge of the fault but no additional degrees of freedom are added on the fault edge.
This naturally forces slip to zero along the buried edges.

In 2D the default in-plane slip is left-lateral, so we use the reference directions to resolve the ambiguity in specifying reverse slip.
In 3D the reference directions are used to resolve the ambiguity in the along-strike and dip-dir directions.
If the fault plane is horizontal, then the up-dir corresponds to the reverse-motion on the +z side of the fault.
The only requirement for this direction is that it not be colinear with the fault normal direction.
The default value of [0, 0, 1] is appropriate for most 3D problems.

By default the output observers write both diagnostic information (for example, fault orientation directions) and the slip at each time step.
The fault coordinate system is shown in Fig. 16.
The vectors in the fault coordinate system can be transformed to the global coordinate system using the direction vectors in the diagnostic output (Output Observers).

Important

The normal direction is chosen based on how the cells are split to create cohesive cells.
If the normal direction contains a positive z component, then the directions conform to traditional seismologic conventions (along strike and up dip); however, if the normal direction contains a negative z component, then the directions correspond to along strike and down dip directions.

	Prescribed Slip (FaultCohesiveKin)
	Prescribed Slip Parameters (KinSrc)
	Step-Function Slip Time Function (KinSrcStep)

	Constant Slip Rate Slip Time Function (KinSrcConstRate)

	Ramp Slip Time Function (KinSrcRamp)

	Brune Slip Time Function (KinSrcBrune)

	Liu-Cosine Slip Time Function (KinSrcLiuCosine)

	User-Time History Slip Time Function (KinSrcTimeHistory)

	Output

	Fault Slip Impulses (FaultCohesiveImpulses)
	Output

Prescribed Slip (FaultCohesiveKin)

Prescribed slip, often called kinematic earthquake ruptures, use the FaultCohesiveKin component to prescribe the slip as a function of time on the fault surface.
Slip may evolve simultaneously over the fault surface instantaneously in a single time step (as is usually done in quasistatic simulations) or propagate over the fault surface over hundreds and up to thousands of time steps (as is usually done in a dynamic simulation).

Multiple earthquake ruptures can be specified on a single fault surface.
This permits repeatedly rupturing the same portion of a fault or combining earthquake rupture on one subset of the fault surface with steady aseismic slip on another subset (the two subsets may overlap in both time and space).
An array of kinematic earthquake rupture components associates a name (string) with each kinematic rupture.
The default dynamic array contains a single earthquake rupture, rupture.

The default discretization of the slip auxiliary subfield is a basis order of 1 (linear variation on the fault).
This discretization will also be used for all auxiliary subfields associated with parameters of the slip time function.

See also

See FaultCohesiveKin Component for the Pyre properties and facilities and configuration examples.

Prescribed Slip Parameters (KinSrc)

The kinematic rupture parameters include the origin time and slip time function.
The slip initiation time in the slip time function is relative to the origin time (default is 0).
This means that slip initiates at a point at a time corresponding to the sum of the kinematic rupture’s origin time and the slip initiation time for that point.

PyLith supports specification of the evolution of fault slip using analytical expressions for the slip time history at each point, where the parameters for the slip time function may vary over the fault surface.
The following slip time functions are available:

	KinSrcStep:

	a step function for quasistatic modeling of earthquake rupture,

	KinSrcConstRate:

	a constant rate function for steady slip (for example, creep),

	KinSrcRamp:

	a constant rate function for a specified time interval,

	KinSrcBrune:

	a slip time function corresponding to the integral of Brune’s far-field time function for dynamic modeling of earthquake rupture,

	KinSrcLiuCos:

	a slip time function built on cosine functions for dynamic modeling of earthquake rupture, and

	KinSrcTimeHistory:

	a user-specified slip time function.

Step-Function Slip Time Function (KinSrcStep)

This slip function prescribes a step in slip at a given time at a point:

(162)\[\begin{gather}
 D(t)=\left\{ \begin{array}{cc}
 0 & 0\leq t < t_r \\
 D_{final} & t\ge t_r
 \end{array}\right.
\end{gather}\]

where \(D(t)\) is slip at time \(t\), \(D_{final}\) is the final slip, and \(t_r\) is the slip initiation time (time when rupture reaches the location).
The slip is specified independently for each of the components of slip, and the slip and slip starting time may vary over the fault surface.

[image: Step slip time function.]
Fig. 19 Step slip time function.

Table 26 Values in the auxiliary field spatial database for KinSrcStep.

	Subfield

	Components

	initiation_time (\(t_r\))

	–

	final_slip

	opening, left_lateral, reverse

See also

See KinSrcStep Component for the Pyre properties and facilities and configuration examples.

Constant Slip Rate Slip Time Function (KinSrcConstRate)

This slip function prescribes a constant slip rate for the evolution of slip at a point:

(163)\[\begin{gather}
 D(t)=\left\{ \begin{array}{cc}
 0 & 0\leq t < t_r \\
 V(t-t_r) & t \ge t_r
 \end{array}\right.
\end{gather}\]

where \(D(t)\) is slip at time \(t\), \(V\) is the slip rate, and \(t_r\) is the slip initiation time (time when rupture reaches the location).
The slip rate is specified independently for each of the components of slip, and the slip rate and slip starting time may vary over the fault surface.

[image: Constant rate slip time function.]
Fig. 20 Constant rate slip time function.

Table 27 Values in the auxiliary field spatial database for KinSrcConstRate.

	Subfield

	Components

	initiation_time (\(t_r\))

	–

	slip_rate

	opening, left_lateral, reverse

See also

See KinSrcConstRate Component for the Pyre properties and facilities and configuration examples.

Ramp Slip Time Function (KinSrcRamp)

This slip function prescribes a constant slip rate over a time window with a smooth initiation and termination:

(164)\[\begin{gather}
 D(t)=\left\{ \begin{array}{cc}
%
 0 & t-t_r \leq 0 \\
%
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_1(t) & t-t_r \leq \frac{1}{2} t_\mathit{acc} \\
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_2(t) & t-t_r \leq t_\mathit{acc} \\
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_3(t) & t-t_r \leq t_\mathit{rise}-t_\mathit{acc}) \\
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_4(t) & t-t_r \leq t_\mathit{rise}-\frac{1}{2} t_\mathit{acc} \\
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_5(t) & t-t_r \leq t_\mathit{rise} \\
 \frac{D_\mathit{fina}}{C_\mathit{acc}} f_6(t) & t-t_r > t_\mathit{rise}
\end{array}\right.
\end{gather}\]

(165)\[\begin{align}
f_1(t) = &\frac{1}{6} t^3 \\
%
f_2(t) =
 &\frac{1}{2} t_\mathit{acc} t^2
 -\frac{1}{6} t^3
 -\frac{1}{4} t_\mathit{acc}^2 t
 +\frac{1}{24} t_\mathit{acc}^3 \\
%
f_3(t) =
 &\frac{1}{4} t_\mathit{acc}^2 t
 -\frac{1}{8} t_\mathit{acc}^3 \\
%
f_4(t) =
 &-\frac{1}{6} t^3
 +\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc}) t^2
 -\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc})^2 t
 +\frac{1}{4} t_\mathit{acc}^2 t
 +\frac{1}{6} (t_\mathit{rise}-t_\mathit{acc})^3
 -\frac{1}{8} t_\mathit{acc}^3 \\
%
f_5(t) =
 &\frac{1}{6} t^3
 -\frac{1}{2} t_\mathit{rise} t^2
 +\frac{1}{2} t_\mathit{rise}^2 t
 -\frac{1}{3} t_1^3
 +\frac{1}{2} t_\mathit{rise} t_1^2
 -\frac{1}{2} t_\mathit{rise}^2 t_1 \\
 &+\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc}) t_1^2
 -\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc})^2 t_1
 +\frac{1}{4} t_\mathit{acc}^2 t_1
 +\frac{1}{6} (t_\mathit{rise}-t_\mathit{acc})^3
 -\frac{1}{8} t_\mathit{acc}^3 \\
%
f_6(t) =
 &\frac{1}{6} (t_\mathit{rise}^3
 -\frac{1}{3} (t_1^3
 +\frac{1}{2} t_\mathit{rise} (t_1^2
 -\frac{1}{2} (t_\mathit{rise}^2 t_1
 +\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc}) t_1^2
 -\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc})^2 t_1 \\
 &+\frac{1}{4} t_\mathit{acc}^2 t_1
 +\frac{1}{6} (t_\mathit{rise}-t_\mathit{acc})^3
 -\frac{1}{8} t_\mathit{acc}^3 \\
C_\mathit{acc} =
 &\frac{1}{6} t_\mathit{rise}^3
 -1.0/3.0 (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc})^3
 +\frac{1}{2} t_\mathit{rise} (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc})^2
 -\frac{1}{2} t_\mathit{rise}^2 (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc}) \\
 &+\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc}) (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc})^2
 -\frac{1}{2} (t_\mathit{rise}-t_\mathit{acc})^2 (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc})
 +\frac{1}{4} (t_\mathit{acc}^2 (t_\mathit{rise}-\frac{1}{2} t_\mathit{acc})\\
 &+\frac{1}{6} (t_\mathit{rise}-t_\mathit{acc})^3
 -\frac{1}{8} (t_\mathit{acc})^3 \\
%
t_1 = &t_\mathit{rise} - \frac{1}{2} t_\mathit{acc}
\end{align}\]

where \(D(t)\) is slip at time \(t\), \(t_r\) is the slip initiation time (time when rupture reaches the location), \(t_\mathit{rise}\) is the rise time, and \(t_\mathit{acc}\) is the duration of the acceleration impulse.
The slip is specified independently for each of the components of slip, and the slip rate and slip starting time may vary over the fault surface.

[image: Ramp slip time function.]
Fig. 21 Ramp slip time function.

Table 28 Values in the auxiliary field spatial database for KinSrcRamp.

	Subfield

	Components

	initiation_time (\(t_r\))

	–

	rise_time (\(t_\mathit{rise}\))

	–

	impulse_duration (\(t_\mathit{acc}\))

	–

	final_slip

	opening, left_lateral, reverse

See also

See KinSrcRamp Component for the Pyre properties and facilities and configuration examples.

Brune Slip Time Function (KinSrcBrune)

This slip function corresponds to the integral of Brune’s far-field time function [Brune, 1970] and prescribes a rapid rise in slip rate followed by a very gradual slowdown:

(166)\[\begin{gather}
 D(t) = \left\{ \begin{array}{cc}
 0 & 0\leq t < t_r \\
 D_\mathit{final} \left(1-exp\left(-\frac{t-t_r}{t_1}\right)\left(1+\frac{t-t_r}{t_1}\right)\right) & t \ge t_r
 \end{array}\right.\\
 t_1 = 0.6195 t_\mathit{rise}
\end{gather}\]

where \(D(t)\) is slip at time \(t\), \(D_{final}\) is the final slip at the location, \(t_r\) is the slip initiation time (time when rupture reaches the location), and \(t_\mathit{rise}\) is the rise time.
Because the slip time function approaches the final slip asymptotically, we use the time it takes for the slip to reach 95% of the final slip value as the rise time.

[image: Brune slip time function.]
Fig. 22 Brune slip time function.

Table 29 Values in the auxiliary field spatial database for KinSrcBrune.

	Subfield

	Components

	initiation_time (\(t_r\))

	–

	rise_time (\(t_\mathit{rise}\))

	–

	final_slip

	opening, left_lateral, reverse

See also

See KinSrcBrune Component for the Pyre properties and facilities and configuration examples.

Liu-Cosine Slip Time Function (KinSrcLiuCosine)

This slip time function, proposed by Liu, Archuleta, and Hartzell for use in ground-motion modeling [Liu et al., 2006], combines several cosine and sine functions together to create a slip time history with a sharp rise and gradual termination with a finite duration of slip.
The evolution of slip at a point follows:

(167)\[\begin{gather}
 D(t) = \left\{ \begin{array}{cc}
 D_{\mathit{final}} C_n \left(0.7t-0.7\frac{t_1}\pi\sin\frac{\pi t}{t_1}-1.2\frac{t_1}{\pi}\left(\cos\frac{\pi t}{2t_1}-1\right)\right) & 0\leq t < t_1 \\
%
 D_{\mathit{final}} C_n \left(1.0 t - 0.7\frac{t1}{\pi}\sin\frac{\pi t}{t_1} + 0.3\frac{t2}{\pi}\sin\frac{\pi(t-t1)}{t_2}+\frac{1.2}{\pi}t_1-0.3t_1\right) & t_1\leq t < 2t_1\\
%
 D_{\mathit{final}}C_n\left(0.7-0.7\cos\frac{\pi t}{t_1}+0.6\sin\frac{\pi t}{2 t_1}\right) & 2 t_1 \leq t \leq t_0
 \end{array}\right.\\
 C_n=\frac{\pi}{1.4\pi t_1+1.2t_1+0.3\pi t_2}\\
 t_0=1.525 t_\mathit{rise}\\
 t_1=0.13t_0\\
 t_2=t_0-t_1
\end{gather}\]

where \(D(t)\) is slip at time \(t\), \(D_{final}\) is the final slip at the location, \(t_r\) is the slip initiation time (time when rupture reaches the location), and \(t_\mathit{rise}\) is the rise time.

[image: Liu-cosine slip time function.]
Fig. 23 Liu-cosine slip time function.

Table 30 Values in the auxiliary field spatial database for KinSrcLiuCos.

	Subfield

	Components

	initiation_time (\(t_r\))

	–

	rise_time (\(t_\mathit{rise}\))

	–

	final_slip

	opening, left_lateral, reverse

See also

See KinSrcLiuCos Component for the Pyre properties and facilities and configuration examples.

User-Time History Slip Time Function (KinSrcTimeHistory)

This slip time function reads the slip time function from a data file, so it can have an arbitrary shape.
The slip and slip initiation times are specified using spatial databases, so the slip time function should use a normalized amplitude (0 \(\rightarrow\) 1).

Table 31 Values in the auxiliary field spatial database for KinSrcTimeHistory.

	Subfield

	Components

	initiation_time

	–

	final_slip

	opening, left_lateral, reverse

See also

See KinSrcTimeHistory Component for the Pyre properties and facilities and configuration examples.

Output

The derived subfield available for prescribed slip is the change in tractions on the fault surface.

Tip

To compute the change in tractions on a locked fault, prescribe zero slip on the fault.

Table 32 Derived subfields that are available for output for prescribed slip.

	Subfield

	Components

	traction_change

	normal, along strike, up dip

Fault Slip Impulses (FaultCohesiveImpulses)

Computing static Green’s functions using the GreensFns problem (Green’s Functions Problem (GreensFns)) requires a specialized fault implementation, FaultCohesiveImpulses, to set up the slip impulses.
The parameters controlling the slip impulses include the slip components to be used (left-lateral, reverse, or fault opening) and the amplitude of the impulses (for example, to use only a subset of a fault).

The slip auxiliary subfield specifies the patch of the fault on which to apply slip impulses.
Additionally, the basis order for the representation of the slip auxiliary subfield and the solution fields controls the spatial representation of the slip impulse.
The default basis order for all of these fields is 1, corresponding to a linear variation in slip, fault traction, and displacement.
A basis order of 0 will approximate uniform slip within a fault cell using the finite-element representation of the displacement field and fault Lagrange multiplier.
For example, a basis order of 0 for the slip auxiliary subfield and a basis order of 1 for the displacement and fault Lagrange multiplier fields will result in nearly uniform slip within the fault cell with a linear taper into the adjacent surrounding fault cells.

Impulses will be applied at any point on the fault with a slip component greater than the specified threshold. Slip impulses can be applied on any subset of the slip components, such as just the left lateral and reverse components in 3D and not fault opening.

Table 33 Impulse degrees of freedom

	Impulse degree of freedom

	Slip component

	0

	fault opening

	1

	left lateral

	2

	reverse (3D only)

Pyre User Interface

See FaultCohesiveImpulses Component for the Pyre properties and facilities and configuration examples.

Output

The derived subfield available for Green’s functions is the change in tractions on the fault surface.

Table 34 Derived subfields that are available for output for Green’s functions.

	Subfield

	Components

	traction_change

	normal, along strike, up dip

PyLith Components

	apps
	EqInfoApp

	PyLithApp

	bc
	AbsorbingDampers

	AuxSubfieldsAbsorbingDampers

	AuxSubfieldsTimeDependent

	BoundaryCondition

	DirichletTimeDependent

	NeumannTimeDependent

	ZeroDB

	faults
	AuxSubfieldsFault

	FaultCohesive

	FaultCohesiveImpulses

	FaultCohesiveKin

	KinSrc

	KinSrcBrune

	KinSrcConstRate

	KinSrcLiuCos

	KinSrcRamp

	KinSrcStep

	KinSrcTimeHistory

	SingleRupture

	materials
	AuxSubfieldsElasticity

	AuxSubfieldsIsotropicLinearElasticity

	AuxSubfieldsIsotropicLinearGenMaxwell

	AuxSubfieldsIsotropicLinearMaxwell

	AuxSubfieldsIsotropicLinearPoroelasticity

	AuxSubfieldsIsotropicPowerLaw

	AuxSubfieldsPoroelasticity

	DerivedSubfieldsElasticity

	Elasticity

	Homogeneous

	IncompressibleElasticity

	IsotropicLinearElasticity

	IsotropicLinearGenMaxwell

	IsotropicLinearIncompElasticity

	IsotropicLinearMaxwell

	IsotropicLinearPoroelasticity

	IsotropicPowerLaw

	Material

	Poroelasticity

	RheologyElasticity

	RheologyIncompressibleElasticity

	RheologyPoroelasticity

	meshio
	DataWriter

	DataWriterHDF5

	DataWriterHDF5Ext

	DataWriterVTK

	MeshIOAscii

	MeshIOCubit

	MeshIOObj

	MeshIOPetsc

	OutputObserver

	OutputPhysics

	OutputSoln

	OutputSolnBoundary

	OutputSolnDomain

	OutputSolnPoints

	OutputTrigger

	OutputTriggerStep

	OutputTriggerTime

	PointsList

	problems
	GreensFns

	InitialCondition

	InitialConditionDomain

	InitialConditionPatch

	Physics

	Problem

	ProblemDefaults

	ProgressMonitor

	ProgressMonitorStep

	ProgressMonitorTime

	SingleProblem

	SolnDisp

	SolnDispLagrange

	SolnDispPres

	SolnDispPresLagrange

	SolnDispPresTracStrain

	SolnDispPresTracStrainVelPdotTdot

	SolnDispPresVel

	SolnDispVel

	SolnDispVelLagrange

	Solution

	SolutionSubfield

	SubfieldDisplacement

	SubfieldLagrangeFault

	SubfieldPressure

	SubfieldPressureDot

	SubfieldTemperature

	SubfieldTraceStrain

	SubfieldTraceStrainDot

	SubfieldVelocity

	TimeDependent

	testing
	UnitTestApp

	topology
	Distributor

	MeshGenerator

	MeshImporter

	MeshImporterDist

	MeshRefiner

	RefineUniform

	Subfield

	utils
	CollectVersionInfo

	DumpParameters

	DumpParametersAscii

	DumpParametersJson

	EmptyBin

	NullComponent

	PetscDefaults

	PetscManager

	PropertyList

	SimulationMetadata

apps

	EqInfoApp

	PyLithApp

EqInfoApp

	Full name:

	pylith.apps.EqInfoApp

	Journal name:

	eqinfoapp

Pyre Facilities

	coordsys: Coordinate system associated with mesh.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

	db_properties: Spatial database for elastic properties.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_properties

	weaver: the pretty printer of my configuration as an XML document

	current value: ‘weaver’, from {default}

	configurable as: weaver

Pyre Properties

	faults=<list>: Array of fault names.

	default value: []

	current value: [], from {default}

	filename_pattern=<str>: Pattern for fault files.

	default value: ‘output/fault_%s.h5’

	current value: ‘output/fault_%s.h5’, from {default}

	output_filename=<str>: Filename for output.

	default value: ‘eqstats.py’

	current value: ‘eqstats.py’, from {default}

	snapshot_units=<dimensional>: Units for timestamps in array of snapshots.

	default value: 1*s

	current value: 1*s, from {default}

	snapshots=<list>: Array of timestamps for slip snapshots (-1 == last time step).

	default value: [-1]

	current value: [-1], from {default}

	typos=<str>: Specifies the handling of unknown properties and facilities

	default value: ‘pedantic’

	current value: ‘pedantic’, from {default}

	validator: (in [‘relaxed’, ‘strict’, ‘pedantic’])

PyLithApp

Full name: pylith.apps.PyLithApp

Python PyLithApp application.

Pyre Facilities

	dump_parameters=<component name>: Dump parameters used and version information to file.

	current value: ‘dumpparamters’, from {default}

	configurable as: dumpparamters, dump_parameters

	job=<component name>: (no documentation available)

	current value: ‘job’, from {default}

	configurable as: job

	launcher=<component name>: (no documentation available)

	current value: ‘mpich’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/mpi/launchers/mpich.odb’} via {default}

	configurable as: mpich, launcher

	mesh_generator=<component name>: Generates or imports the computational mesh.

	current value: ‘meshimporter’, from {default}

	configurable as: meshimporter, mesh_generator

	metadata=<component name>: Simulation metadata.

	current value: ‘metadata’, from {default}

	configurable as: metadata

	petsc=<component name>: Manager for PETSc options.

	current value: ‘petsc’, from {default}

	configurable as: petsc

	problem=<component name>: Computational problem to solve.

	current value: ‘timedependent’, from {default}

	configurable as: timedependent, problem

	scheduler=<component name>: (no documentation available)

	current value: ‘scheduler-none’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/schedulers/none.odb’} via {default}

	configurable as: scheduler-none, scheduler

	weaver=<component name>: the pretty printer of my configuration as an XML document

	current value: ‘weaver’, from {default}

	configurable as: weaver

Pyre Properties

	include-citations=<bool>: At end of simulation, display information on how to cite PyLith and components used.

	default value: False

	current value: False, from {default}

	initialize_only=<bool>: Stop simulation after initializing problem.

	default value: False

	current value: False, from {default}

	nodes=<int>: number of machine nodes

	default value: 1

	current value: 1, from {default}

	start_python_debugger=<bool>: Start python debugger at beginning of main().

	default value: False

	current value: False, from {default}

	typos=<str>: Specifies the handling of unknown properties and facilities

	default value: ‘pedantic’

	current value: ‘pedantic’, from {default}

	validator: (in [‘relaxed’, ‘strict’, ‘pedantic’])

bc

	AbsorbingDampers

	AuxSubfieldsAbsorbingDampers

	AuxSubfieldsTimeDependent

	BoundaryCondition

	DirichletTimeDependent

	NeumannTimeDependent

	ZeroDB

AbsorbingDampers

	Full name:

	pylith.bc.AbsorbingDampers

	Journal name:

	absorbingdampers

Absorbing dampers boundary condition.

Implements BoundaryCondition.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	field=<str>: Solution subfield associated with boundary condition.

	default value: ‘displacement’

	current value: ‘displacement’, from {default}

	label=<str>: Name of label identifying boundary.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124bbc4c0>

	label_value=<int>: Value of label identifying boundary (tag of physical group in Gmsh files).

	default value: 1

	current value: 1, from {default}

Example

Example of setting AbsorbingDampers Pyre properties and facilities in a parameter file.

[bc]
label = boundary_xpos
field = velocity

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Material properties for absorbing boundary
db_auxiliary_field.values = [density, vs, vp]
db_auxiliary_field.data = [2500*kg/m**3, 1.0*km/s, 1.732*km/s]

auxiliary_subfields.density.basis_order = 0
auxiliary_subfields.vp.basis_order = 0
auxiliary_subfields.vs.basis_order = 0

AuxSubfieldsAbsorbingDampers

	Full name:

	pylith.bc.AuxSubfieldsAbsorbingDampers

	Journal name:

	auxsubfieldsabsorbingdampers

Auxiliary subfields for the absorbing dampers boundary condition.

Pyre Facilities

	density: Mass density subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, density

	vp: Dilatational (P) wave speed subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, vp

	vs: Shear (S) wave speed subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, vs

Example

Example of setting AuxSubfieldsAbsorbingDampers Pyre properties and facilities in a parameter file.

[absorbing_dampers_auxiliary_subfields]
density.basis_order = 0
vp.basis_order = 0
vs.basis_order = 0

AuxSubfieldsTimeDependent

	Full name:

	pylith.bc.AuxSubfieldsTimeDependent

	Journal name:

	auxfieldstimedependent

Auxiliary subfields for time-dependent boundary conditions.

The boundary conditions values have the functional form:

(168)\[\begin{equation}
 f(x,t) = f_0(x) + \dot{f}_1(x)(t-t_1(x)) + f_2(x)a(t-t_2(x))
\end{equation}\]

The association of these functions with the auxiliary subfields is:

	\(f_0(x)\):

	initial_amplitude

	\(\dot{f}_1(x)\):

	rate_amplitude

	\(t_1(x)\):

	rate_start

	\(f_2(x)\):

	time_history_amplitude

	\(t_2(x)\):

	time_history_start

Pyre Facilities

	initial_amplitude: Initial amplitude, f_0(x), subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, initial_amplitude

	rate_amplitude: Rate amplitude, \dot{f}_1(x), subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, rate_amplitude

	rate_start_time: Rate starting time, t_1(x), subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, rate_start_time

	time_history_amplitude: Time history amplitude, f_2(x). subfield

	current value: ‘subfield’, from {default}

	configurable as: subfield, time_history_amplitude

	time_history_start_time: Time history starting time, t_2(s), subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, time_history_start_time

Example

Example of setting AuxSubfieldsTimeDependent Pyre properties and facilities in a parameter file.

[time_dependent_subfields]
initial_amplitude.basis_order = 1
rate_amplitude.basis_order = 0
rate_start_time.basis_order = 1
time_history_amplitude.basis_order = 1
time_history_start_time.basis_order = 1

BoundaryCondition

	Full name:

	pylith.bc.BoundaryCondition

	Journal name:

	boundarycondition

Abstract base class for boundary conditions.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	field=<str>: Solution subfield associated with boundary condition.

	default value: ‘displacement’

	current value: ‘displacement’, from {default}

	label=<str>: Name of label identifying boundary.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124bbc4c0>

	label_value=<int>: Value of label identifying boundary (tag of physical group in Gmsh files).

	default value: 1

	current value: 1, from {default}

DirichletTimeDependent

	Full name:

	pylith.bc.DirichletTimeDependent

	Journal name:

	dirichlettimedependent

Dirichlet (prescribed values) time-dependent boundary condition.

This boundary condition sets values of a single solution subfield on a boundary.
To set multiple solution subfields on a boundary, use multiple Dirichlet boundary conditions.

See also

See AuxSubfieldsTimeDependent Component for the functional form of the time depenence.

Implements BoundaryCondition.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

	time_history: Time history with normalized amplitude.

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, time_history

Pyre Properties

	constrained_dof=<array>: Array of constrained degrees of freedom (0=1st DOF, 1=2nd DOF, etc).

	default value: []

	current value: [], from {default}

	field=<str>: Solution subfield associated with boundary condition.

	default value: ‘displacement’

	current value: ‘displacement’, from {default}

	label=<str>: Name of label identifying boundary.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124bbc4c0>

	label_value=<int>: Value of label identifying boundary (tag of physical group in Gmsh files).

	default value: 1

	current value: 1, from {default}

	use_initial=<bool>: Use initial term in time-dependent expression.

	default value: True

	current value: True, from {default}

	use_rate=<bool>: Use rate term in time-dependent expression.

	default value: False

	current value: False, from {default}

	use_time_history=<bool>: Use time history term in time-dependent expression.

	default value: False

	current value: False, from {default}

Example

Example of setting DirichletTimeDependent Pyre properties and facilities in a parameter file.

Dirichlet (prescribed displacements) boundary condition constraining the x and y degrees of freedom on the +y boundary.
[pylithapp.problem.bc.bc_ypos]
constrained_dof = [0, 1]
label = boundary_ypos
field = displacement

use_initial = False
use_time_history = True
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Displacement Dirichlet BC +y boundary
db_auxiliary_field.values = [time_history_amplitude_x, time_history_amplitude_y, time_history_start_time]
db_auxiliary_field.data = [1.0*m, 0.0*m, 0.0]

time_history = spatialdata.spatialdb.TimeHistory
time_history.description = Impulse time history
time_history.filename = impulse.timedb

NeumannTimeDependent

	Full name:

	pylith.bc.NeumannTimeDependent

	Journal name:

	neumanntimedependent

Neumann time-dependent boundary condition. Implements BoundaryCondition.

This boundary condition applies a Neumann boundary condition for a single solution subfield on a boundary.
To apply Neumann boundary conditions for multiple solution subfields on a boundary, use multiple Neumann boundary conditions.

Important

The components are specified in the local normal-tangential coordinate system for the boundary. Ambiguities in specifying the shear (tangential) tractions in 3D problems are resolved using the ref_dir_1 and ref_dir_2 properties.
The first tangential direction is \(\vec{z} \times \vec{r}_1\) unless these are colinear, then \(\vec{r}_2\) (ref_dir_2) is used.
The second tangential direction is \(\vec{n} \times \vec{t}_1\).

See also

See AuxSubfieldsTimeDependent Component for the functional form of the time depenence.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/home/pylith-user/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

	time_history: Time history with normalized amplitude as a function of time.

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, time_history

Pyre Properties

	field=<str>: Solution subfield associated with boundary condition.

	default value: ‘displacement’

	current value: ‘displacement’, from {default}

	label=<str>: Name of label identifying boundary.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x11c4858b0>

	label_value=<int>: Value of label identifying boundary (tag of physical group in Gmsh files).

	default value: 1

	current value: 1, from {default}

	ref_dir_1=<list>: First choice for reference direction to discriminate among tangential directions in 3D.

	default value: [0.0, 0.0, 1.0]

	current value: [0.0, 0.0, 1.0], from {default}

	validator: <function validateDir at 0x11c485dc0>

	ref_dir_2=<list>: Second choice for reference direction to discriminate among tangential directions in 3D.

	default value: [0.0, 1.0, 0.0]

	current value: [0.0, 1.0, 0.0], from {default}

	validator: <function validateDir at 0x11c485dc0>

	scale_name=<str>: Type of scale for nondimensionalizing Neumann boundary condition (‘pressure’ for elasticity).

	default value: ‘pressure’

	current value: ‘pressure’, from {default}

	validator: (in [‘length’, ‘time’, ‘pressure’, ‘density’, ‘velocity’])

	use_initial=<bool>: Use initial term in time-dependent expression.

	default value: True

	current value: True, from {default}

	use_rate=<bool>: Use rate term in time-dependent expression.

	default value: False

	current value: False, from {default}

	use_time_history=<bool>: Use time history term in time-dependent expression.

	default value: False

	current value: False, from {default}

Example

Example of setting NeumannTimeDependent Pyre properties and facilities in a parameter file.

Neumann (traction) boundary condition in 2D on -y boundary.
[pylithapp.problem.bc.bc_yneg]
label = boundary_yneg
field = displacement
scale_name = pressure

use_initial = False
use_time_history = True
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Displacement Neumann BC +y boundary
db_auxiliary_field.values = [time_history_amplitude_tangential, time_history_amplitude_normal, time_history_start_time]
db_auxiliary_field.data = [2.0*MPa, -1.0*MPa, 0.0]

time_history = spatialdata.spatialdb.TimeHistory
time_history.description = Impulse time history
time_history.filename = impulse.timedb

ZeroDB

	Full name:

	pylith.bc.ZeroDB

	Journal name:

	zerodb

Special case of a UniformDB spatial database with uniform zero initial amplitude values for degrees of freedom.

Implements SpatialDB.

Pyre Properties

	data=<list>: Values in spatial database.

	default value: []

	current value: [], from {default}

	description=<str>: Description for database.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateDescription at 0x124922820>

	label=<str>: Label for ZeroDB spatial database.

	default value: ‘Zero initial amplitude spatial database.’

	current value: ‘Zero initial amplitude spatial database.’, from {default}

	values=<list>: Names of values in spatial database.

	default value: []

	current value: [], from {default}

Example

Example of setting ZeroDB Pyre properties and facilities in a parameter file.

Zero displacement boundary condition constraining the y degree of freedom on the -y boundary.
[pylithapp.problem.bc.bc_yneg]
constrained_dof = [1]
label = boundary_yneg
field = displacement

db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet displacement boundary condition on the -y boundary

faults

	AuxSubfieldsFault

	FaultCohesive

	FaultCohesiveImpulses

	FaultCohesiveKin

	KinSrc

	KinSrcBrune

	KinSrcConstRate

	KinSrcLiuCos

	KinSrcRamp

	KinSrcStep

	KinSrcTimeHistory

	SingleRupture

AuxSubfieldsFault

	Full name:

	pylith.faults.AuxSubfieldsFault

	Journal name:

	auxsubfieldfault

Auxiliary subfields associated with a fault.

Pyre Facilities

	slip: Slip subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, slip

Example

Example of setting AuxSubfieldsFault Pyre properties and facilities in a parameter file.

We set the basis order to represent linear variations in the slip subfield.
[pylithapp.problem.interfaces.fault.auxiliary_fields]
slip.basis_order = 1

FaultCohesive

	Full name:

	pylith.faults.FaultCohesive

	Journal name:

	fault

Abstract base class for a fault surface implemeted with cohesive cells.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	edge=<str>: Name of label identifier for buried fault edges.

	default value: ‘’

	current value: ‘’, from {default}

	edge_value=<int>: Value of label identifier for buried fault edges.

	default value: 1

	current value: 1, from {default}

	label=<str>: Name of label identifier for fault.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124b02ca0>

	label_value=<int>: Value of label identifier for fault.

	default value: 1

	current value: 1, from {default}

	ref_dir_1=<list>: First choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 0.0, 1.0]

	current value: [0.0, 0.0, 1.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

	ref_dir_2=<list>: Second choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 1.0, 0.0]

	current value: [0.0, 1.0, 0.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

FaultCohesiveImpulses

	Full name:

	pylith.faults.FaultCohesiveImpulses

	Journal name:

	faultcohesiveimpulses

Fault surface with slip impulses for Green’s functions implemented with cohesive cells.

The comopnents

Implements FaultCohesiveKin.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	db_auxiliary_field: (no documentation available)

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	edge=<str>: Name of label identifier for buried fault edges.

	default value: ‘’

	current value: ‘’, from {default}

	edge_value=<int>: Value of label identifier for buried fault edges.

	default value: 1

	current value: 1, from {default}

	impulse_dof=<list>: Indices of impulse components; 0=fault opening, 1=left lateral, 2=reverse (3D only).

	default value: []

	current value: [], from {default}

	validator: <function validateDOF at 0x124b029d0>

	label=<str>: Name of label identifier for fault.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124b02ca0>

	label_value=<int>: Value of label identifier for fault.

	default value: 1

	current value: 1, from {default}

	ref_dir_1=<list>: First choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 0.0, 1.0]

	current value: [0.0, 0.0, 1.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

	ref_dir_2=<list>: Second choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 1.0, 0.0]

	current value: [0.0, 1.0, 0.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

	threshold=<dimensional>: Threshold for non-zero amplitude.

	default value: 1e-06*m

	current value: 1e-06*m, from {default}

	validator: (greater than or equal to 0*m)

Example

Example of setting FaultCohesiveImpulses Pyre properties and facilities in a parameter file.

[pylithapp.greensfns]
interfaces = [fault]
interfaces.fault = pylith.faults.FaultCohesiveImpulses

[pylithapp.greensfns.interfaces.fault]
label = fault
label_value = 20

Impulses for left-lateral slip (dof=1)
impulse_dof = [1]
threshold = 0.5

Create impulses at all points on the fault by specifying a uniform amplitude of 1.0.
Impulses will be applied at any location with a slip component greater than the threshold.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Slip impulse amplitude
db_auxiliary_field.values = [slip_left_lateral, slip_opening]
db_auxiliary_field.data = [1.0*m, 0.0*m]

Represent the impulse as a linear variation in slip centered on each point.
auxiliary_subfields.slip.basis_order = 1

FaultCohesiveKin

	Full name:

	pylith.faults.FaultCohesiveKin

	Journal name:

	faultcohesivekin

Fault surface with kinematic (prescribed) slip implemented with cohesive cells.

The fault may have an arbitrary number of kinematic sources for coseismic slip and creep.
They are superimposed at each time step to create the prescribed slip on the fault.

Implements FaultCohesive.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

	db_auxiliary_field: (no documentation available)

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	eq_ruptures: Kinematic earthquake sources information.

	current value: ‘singlerupture’, from {default}

	configurable as: singlerupture, eq_ruptures

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	edge=<str>: Name of label identifier for buried fault edges.

	default value: ‘’

	current value: ‘’, from {default}

	edge_value=<int>: Value of label identifier for buried fault edges.

	default value: 1

	current value: 1, from {default}

	label=<str>: Name of label identifier for fault.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x124b02ca0>

	label_value=<int>: Value of label identifier for fault.

	default value: 1

	current value: 1, from {default}

	ref_dir_1=<list>: First choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 0.0, 1.0]

	current value: [0.0, 0.0, 1.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

	ref_dir_2=<list>: Second choice for reference direction to discriminate among tangential directions in 3-D.

	default value: [0.0, 1.0, 0.0]

	current value: [0.0, 1.0, 0.0], from {default}

	validator: <function validateDir at 0x124b02dc0>

Example

Example of setting FaultCohesiveKin Pyre properties and facilities in a parameter file.

Specify prescribed slip on a fault via two earthquakes in a 2D domain.
[pylithapp.problem.interfaces.fault]
label = fault
edge = fault_edge

observers.observer.data_fields = [slip]

Two earthquakes with different slip time functions.
eq_ruptures = [quake10, quake50]
quake10 = pylith.faults.KinSrcBrune
quake50 = pylith.faults.KinSrcLiuCosine

Rupture parameters for the first earthquake.
[pylithapp.problem.interfaces.fault.eq_ruptures.quake10]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

Rupture parameters for the second earthquake.
[pylithapp.problem.interfaces.fault.eq_ruptures.quake50]
origin_time = 50*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -1.0*m, 0.0*m]

KinSrc

	Full name:

	pylith.faults.KinSrc

	Journal name:

	kinsrc

Abstract base class for a prescribed slip source.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

KinSrcBrune

	Full name:

	pylith.faults.KinSrcBrune

	Journal name:

	kinsrcbrune

Brune [1970] far-field slip time function.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcBrune Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Brune far-field slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, rise_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, 3.0*s, -2.0*m, 0.0*m]

KinSrcConstRate

	Full name:

	pylith.faults.KinSrcConstRate

	Journal name:

	kinsrcconstrate

Constant slip rate slip time function.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcConstRate Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 100*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Constant slip rate slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, slip_rate_left_lateral, slip_rate_opening]
db_auxiliary_field.data = [0.0*s, -2.0*mm/year, 0.0*mm/year]

KinSrcLiuCos

	Full name:

	pylith.faults.KinSrcLiuCos

	Journal name:

	kinsrcliucos

Liu et al. [2006] cosine-sine slip time function.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcLiuCos Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Liu cosine-sine slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, rise_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, 3.0*s, -2.0*m, 0.0*m]

KinSrcRamp

	Full name:

	pylith.faults.KinSrcRamp

	Journal name:

	kinsrcramp

Linear ramp slip time function.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcRamp Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Ramp slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, rise_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, 3.0*s, -2.0*m, 0.0*m]

KinSrcStep

	Full name:

	pylith.faults.KinSrcStep

	Journal name:

	kinsrcstep

Step slip time function.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcStep Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Step slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

KinSrcTimeHistory

	Full name:

	pylith.faults.KinSrcTimeHistory

	Journal name:

	kinsrctimehistory

Time history slip time function.

The slip time function is given in a TimeHistory database.

Implements KinSrc.

Pyre Facilities

	db_auxiliary_field: Database for slip time function parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	time_history: Time history with normalized amplitude as a function of time.

	current value: ‘timehistory’, from {default}

	configurable as: timehistory, time_history

Pyre Properties

	origin_time=<dimensional>: Origin time for slip source.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting KinSrcTimeHistory Pyre properties and facilities in a parameter file.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
origin_time = 10*year

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Time history slip time function auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

time_history.description = Slip time function time history
time_history.filename = slipfn.timedb

SingleRupture

	Full name:

	pylith.faults.SingleRupture

	Journal name:

	singlerupture

Kinematic slip source container with one source.

See also

See FaultCohesiveKin Component.

Pyre Facilities

	rupture: Kinematic slip source (for example, an earthquake rupture) for fault.

	current value: ‘kinsrcstep’, from {default}

	configurable as: kinsrcstep, rupture

materials

	AuxSubfieldsElasticity

	AuxSubfieldsIsotropicLinearElasticity

	AuxSubfieldsIsotropicLinearGenMaxwell

	AuxSubfieldsIsotropicLinearMaxwell

	AuxSubfieldsIsotropicLinearPoroelasticity

	AuxSubfieldsIsotropicPowerLaw

	AuxSubfieldsPoroelasticity

	DerivedSubfieldsElasticity

	Elasticity

	Homogeneous

	IncompressibleElasticity

	IsotropicLinearElasticity

	IsotropicLinearGenMaxwell

	IsotropicLinearIncompElasticity

	IsotropicLinearMaxwell

	IsotropicLinearPoroelasticity

	IsotropicPowerLaw

	Material

	Poroelasticity

	RheologyElasticity

	RheologyIncompressibleElasticity

	RheologyPoroelasticity

AuxSubfieldsElasticity

	Full name:

	pylith.materials.AuxSubfieldsElasticity

	Journal name:

	auxsubfieldselasticity

Auxiliary subfields associated with the elasticity equation.

Setting the parameters for a subfield does not turn on its use.
The Elasticity Component has flags for including or excluding terms in the elasticity equation.

Pyre Facilities

	body_force: Body force subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, body_force

	density: Density subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, density

	gravitational_acceleration: Gravitational acceleration subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, gravitational_acceleration

Example

Example of setting AuxSubfieldsElasticity Pyre properties and facilities in a parameter file.

We set the basis order to represent linear variations in the density and body
force subfields and a uniform gravitational acceleration subfield.
[pylithapp.problem.materials.mat_elastic.auxiliary_fields]
density.basis_order = 1
body_force.basis_order = 1
gravitational_acceleration.basis_order = 0

AuxSubfieldsIsotropicLinearElasticity

	Full name:

	pylith.materials.AuxSubfieldsIsotropicLinearElasticity

	Journal name:

	auxsubfieldsisotropiclinearelasticity

Auxiliary subfields associated with the isotropic linear elastic bulk rheology.

Important

The auxiliary subfields (internal representation of material properties) do not necessarily match the values in the spatial database.
For example, the spatial database uses density, Vp, and Vs instead of density, shear modulus, and bulk modulus because that is how they are usually characterized in seismic velocity models.
PyLith converts the values provided by the user in a spatial database to the internal representation stored in the auxiliary field.

Pyre Facilities

	bulk_modulus: Bulk modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, bulk_modulus

	reference_strain: Reference strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_strain

	reference_stress: Reference stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_stress

	shear_modulus: Shear modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus

Example

Example of setting AuxSubfieldsIsotropicLinearElasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_elastic.rheology.auxiliary_fields]
shear_modulus.basis_order = 1
bulk_modulus.basis_order = 1
reference_stress.basis_order = 0
reference_strain.basis_order = 0

AuxSubfieldsIsotropicLinearGenMaxwell

	Full name:

	pylith.materials.AuxSubfieldsIsotropicLinearGenMaxwell

	Journal name:

	auxfieldsisotropiclineargenmaxwell

Auxiliary subfields associated with the isotropic generalized Maxwell viscoelastic bulk rheology.

Pyre Facilities

	bulk_modulus: Bulk modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, bulk_modulus

	maxwell_time: Maxwell time subfield for 3 Maxwell elements.

	current value: ‘subfield’, from {default}

	configurable as: subfield, maxwell_time

	reference_strain: Reference strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_strain

	reference_stress: Reference stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_stress

	shear_modulus: Shear modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus

	shear_modulus_ratio: Shear modulus ratio subfield for 3 Maxwell elements.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus_ratio

	total_strain: Total strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, total_strain

	viscous_strain: Viscous strain subfield for 3 Maxwell elements.

	current value: ‘subfield’, from {default}

	configurable as: subfield, viscous_strain

Example

Example of setting AuxSubfieldsIsotropicLinearGenMaxwell Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_genmaxwell.rheology.auxiliary_fields]
shear_modulus.basis_order = 1
bulk_modulus.basis_order = 1
maxwell_time.basis_order = 1
shear_modulus_ratio.basis_order = 1
total_strain.basis_order = 1
viscous_strain.basis_order = 1
reference_stress.basis_order = 0
reference_strain.basis_order = 0

AuxSubfieldsIsotropicLinearMaxwell

	Full name:

	pylith.materials.AuxSubfieldsIsotropicLinearMaxwell

	Journal name:

	auxfieldsisotropiclinearmaxwell

Auxiliary subfields associated with the isotropic linear Maxwell viscoelastic bulk rheology.

Pyre Facilities

	bulk_modulus: Bulk modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, bulk_modulus

	maxwell_time: Maxwell time subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, maxwell_time

	reference_strain: Reference strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_strain

	reference_stress: Reference stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_stress

	shear_modulus: Shear modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus

	total_strain: Total strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, total_strain

	viscous_strain: Viscous strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, viscous_strain

Example

Example of setting AuxSubfieldsIsotropicLinearMaxwell Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_maxwell.rheology.auxiliary_fields]
shear_modulus.basis_order = 1
bulk_modulus.basis_order = 1
maxwell_time.basis_order = 1
total_strain.basis_order = 1
viscous_strain.basis_order = 1
reference_stress.basis_order = 0
reference_strain.basis_order = 0

AuxSubfieldsIsotropicLinearPoroelasticity

	Full name:

	pylith.materials.AuxSubfieldsIsotropicLinearPoroelasticity

	Journal name:

	auxfieldsisotropiclinearporoelasticity

Auxiliary subfields associated with the isotropic linear poroelastic bulk rheology.

Pyre Facilities

	biot_coefficient: Biot coefficient subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, biot_coefficient

	biot_modulus: Biot modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, biot_modulus

	drained_bulk_modulus: Drained bulk modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, drained_bulk_modulus

	isotropic_permeability: Isotropic permeability subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, isotropic_permeability

	shear_modulus: Shear modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus

	tensor_permeability: Tensor permeability subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, tensor_permeability

Example

Example of setting AuxSubfieldsIsotropicLinearPoroelasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_poroelastic.rheology.auxiliary_fields]
shear_modulus.basis_order = 1
biot_coefficient.basis_order = 0
isotropic_permeability.basis_order = 0
drained_bulk_modulus.basis_order = 1
biot_modulus.basis_order = 1

AuxSubfieldsIsotropicPowerLaw

	Full name:

	pylith.materials.AuxSubfieldsIsotropicPowerLaw

	Journal name:

	auxfieldsisotropicpowerlaw

Auxiliary subfields associated with the isotropic power-law viscoelastic bulk rheology.

Pyre Facilities

	bulk_modulus: Bulk modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, bulk_modulus

	deviatoric_stress: Deviatoric stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, deviatoric_stress

	power_law_exponent: Power-law exponent subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, power_law_exponent

	power_law_reference_strain_rate: Power-law reference strain rate subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, power_law_reference_strain_rate

	power_law_reference_stress: Power-law reference stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, power_law_reference_stress

	reference_strain: Reference strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_strain

	reference_stress: Reference stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, reference_stress

	shear_modulus: Shear modulus subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, shear_modulus

	viscous_strain: Viscous strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, viscous_strain

Example

Example of setting AuxSubfieldsIsotropicPowerLaw Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_powerlaw.rheology.auxiliary_fields]
shear_modulus.basis_order = 1
bulk_modulus.basis_order = 1
power_law_reference_strain_rate = 1
power_law_reference_stress = 1
power_law_exponent.basis_order = 1
viscous_strain.basis_order = 1
deviatoric_stress.basis_order = 1
reference_stress.basis_order = 0
reference_strain.basis_order = 0

AuxSubfieldsPoroelasticity

	Full name:

	pylith.materials.AuxSubfieldsPoroelasticity

	Journal name:

	auxsubfieldsporoelasticity

Auxiliary subfields associated with the poroelasticity equation.

Setting the parameters for a subfield does not turn on its use.
The Poroelasticity Component has flags for including or excluding terms in the poroelasticity equation.

Pyre Facilities

	body_force: Body force subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, body_force

	fluid_density: Fluid density subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, fluid_density

	fluid_viscosity: Fluid viscosity subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, fluid_viscosity

	gravitational_acceleration: Gravitational acceleration subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, gravitational_acceleration

	porosity: Porosity subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, porosity

	solid_density: Solid density subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, solid_density

	source_density: Source density subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, source_density

Example

Example of setting AuxSubfieldsPoroelasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_poroelastic.auxiliary_fields]
porosity.basis_order = 1
solid_density.basis_order = 1
fluid_density.basis_order = 0
fluid_viscosity.basis_order = 1
body_force.basis_order = 1
source_density.basis_order = 1
gravitational_acceleration.basis_order = 0

DerivedSubfieldsElasticity

	Full name:

	pylith.materials.DerivedSubfieldsElasticity

	Journal name:

	derivedsubfieldselasticity

Derived subfields associated with the elasticity equation.

For elastic materials these derived subfields are available for output in addition to the solution and auxiliary subfields.

Pyre Facilities

	cauchy_strain: Cauchy strain subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, cauchy_strain

	cauchy_stress: Cauchy stress subfield.

	current value: ‘subfield’, from {default}

	configurable as: subfield, cauchy_stress

Example

Example of setting DerivedSubfieldsElasticity Pyre properties and facilities in a parameter file.

The basis order for stress and strain should be at least 1 less than the basis order for displacement.
[pylithapp.problem.materials.mat_elastic.derived_subfields]
cauchy_stress.basis_order = 0
cauchy_strain.basis_order = 0

Elasticity

	Full name:

	pylith.materials.Elasticity

	Journal name:

	elasticity

Material behavior governed by the elasticity equation.

Implements Material.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	bulk_rheology: Bulk rheology for elastic material.

	current value: ‘isotropiclinearelasticity’, from {default}

	configurable as: isotropiclinearelasticity, bulk_rheology

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘derived_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	description=<str>: Descriptive label for material.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateDescription at 0x1248ef790>

	label=<str>: Name of label for material. Currently only ‘material-id’ is allowed.

	default value: ‘material-id’

	current value: ‘material-id’, from {default}

	validator: (in [‘material-id’])

	label_value=<int>: Value of label for material.

	default value: 1

	current value: 1, from {default}

	use_body_force=<bool>: Include body force term in elasticity equation.

	default value: False

	current value: False, from {default}

Example

Example of setting Elasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_elastic]
label_value = 4
description = Upper crust elastic material
use_body_force = False
bulk_rheology = pylith.materials.IsotropicLinearElasticity

auxiliary_subfields.density.basis_order = 0
derived_subfields.cauchy_stress.basis_order = 1
derived_subfields.cauchy_strain.basis_order = 1

Homogeneous

	Full name:

	pylith.materials.Homogeneous

	Journal name:

	homogeneous

Materials container with one material.

See also

See Problems Component.

Pyre Facilities

	material: Material in problem.

	current value: ‘isotropiclinearelasticity’, from {default}

	configurable as: isotropiclinearelasticity, material

IncompressibleElasticity

	Full name:

	pylith.materials.IncompressibleElasticity

	Journal name:

	incompressibleelasticity

Material behavior governed by the elasticity equation.

Implements Material.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	bulk_rheology: Bulk rheology for elastic material.

	current value: ‘isotropiclinearincompelasticity’, from {default}

	configurable as: isotropiclinearincompelasticity, bulk_rheology

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘derived_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	description=<str>: Descriptive label for material.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateDescription at 0x1248ef790>

	label=<str>: Name of label for material. Currently only ‘material-id’ is allowed.

	default value: ‘material-id’

	current value: ‘material-id’, from {default}

	validator: (in [‘material-id’])

	label_value=<int>: Value of label for material.

	default value: 1

	current value: 1, from {default}

	use_body_force=<bool>: Include body force term in elasticity equation.

	default value: False

	current value: False, from {default}

Example

Example of setting IncompressibleElasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_incompelastic]
description = Upper crust incompressible elastic material
label_value = 3
use_body_force = True
bulk_rheology = pylith.materials.IsotropicLinearIncompElasticity

auxiliary_subfields.density.basis_order = 0
auxiliary_subfields.body_force.basis_order = 0
derived_subfields.cauchy_stress.basis_order = 1
derived_subfields.cauchy_strain.basis_order = 1

IsotropicLinearElasticity

	Full name:

	pylith.materials.IsotropicLinearElasticity

	Journal name:

	isotropiclinearelasticity

Isotropic linear elastic bulk rheology.

Implements RheologyElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicLinearElasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_elastic.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

IsotropicLinearGenMaxwell

	Full name:

	pylith.materials.IsotropicLinearGenMaxwell

	Journal name:

	isotropiclineargenmaxwell

Isotropic generalized Maxwell viscoelastic bulk rheology.

Implements RheologyElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicLinearGenMaxwell Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_genmaxwell.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

IsotropicLinearIncompElasticity

	Full name:

	pylith.materials.IsotropicLinearIncompElasticity

	Journal name:

	isotropiclinearincompelasticity

Isotropic linear incompressible elastic bulk rheology.

Implements RheologyIncompressibleElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicLinearIncompElasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_incompelastic.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

IsotropicLinearMaxwell

	Full name:

	pylith.materials.IsotropicLinearMaxwell

	Journal name:

	isotropiclinearmaxwell

Isotropic linear Maxwell viscoelastic bulk rheology.

Implements RheologyElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicLinearMaxwell Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_maxwell.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

IsotropicLinearPoroelasticity

	Full name:

	pylith.materials.IsotropicLinearPoroelasticity

	Journal name:

	isotropiclinearporoelasticity

Isotropic linear incompressible elastic bulk rheology.

Implements RheologyIncompressibleElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

	use_tensor_permeability=<bool>: Use tensor permeability.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicLinearPoroelasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_incompelastic.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

IsotropicPowerLaw

	Full name:

	pylith.materials.IsotropicPowerLaw

	Journal name:

	isotropicpowerlaw

Isotropic power law viscoelastic bulk rheology.

Implements RheologyElasticity.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

Pyre Properties

	use_reference_state=<bool>: Use reference stress/strain state.

	default value: False

	current value: False, from {default}

Example

Example of setting IsotropicPowerLaw Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_powerlaw.rheology]
use_reference_state = False

auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.bulk_modulus.basis_order = 0

Material

	Full name:

	pylith.materials.Material

	Journal name:

	material

Abstract base class for a bulk material.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	description=<str>: Descriptive label for material.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateDescription at 0x1248ef790>

	label=<str>: Name of label for material. Currently only ‘material-id’ is allowed.

	default value: ‘material-id’

	current value: ‘material-id’, from {default}

	validator: (in [‘material-id’])

	label_value=<int>: Value of label for material.

	default value: 1

	current value: 1, from {default}

Poroelasticity

	Full name:

	pylith.materials.Poroelasticity

	Journal name:

	poroelasticity

Material behavior governed by the poroelasticity equation.

Implements Material.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘auxiliary_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: auxiliary_subfields

	bulk_rheology: Bulk rheology for poroelastic material.

	current value: ‘isotropiclinearporoelasticity’, from {default}

	configurable as: isotropiclinearporoelasticity, bulk_rheology

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘derived_subfields’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	configurable as: derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Pyre Properties

	description=<str>: Descriptive label for material.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateDescription at 0x1248ef790>

	label=<str>: Name of label for material. Currently only ‘material-id’ is allowed.

	default value: ‘material-id’

	current value: ‘material-id’, from {default}

	validator: (in [‘material-id’])

	label_value=<int>: Value of label for material.

	default value: 1

	current value: 1, from {default}

	use_body_force=<bool>: Include body force term in Poroelasticity equation.

	default value: False

	current value: False, from {default}

	use_source_density=<bool>: Include source_density term in Poroelasticity equation.

	default value: False

	current value: False, from {default}

	use_state_variables=<bool>: Update porosity state variable using compaction formulation.

	default value: False

	current value: False, from {default}

Example

Example of setting Poroelasticity Pyre properties and facilities in a parameter file.

[pylithapp.problem.materials.mat_poroelastic]
description = Upper crust poroelastic material
label_value = 3
use_body_force = True
use_source_density = False
use_state_variables = True
bulk_rheology = pylith.materials.IsotropicLinearPoroelasticity

auxiliary_subfields.density.basis_order = 0
auxiliary_subfields.body_force.basis_order = 0

RheologyElasticity

	Full name:

	pylith.materials.RheologyElasticity

	Journal name:

	rheologyelasticity

Abstract base class for bulk rheology of elastic material.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

RheologyIncompressibleElasticity

	Full name:

	pylith.materials.RheologyIncompressibleElasticity

	Journal name:

	rheologyincompressibleelasticity

Abstract base class for bulk rheology of incompressible elastic material.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

RheologyPoroelasticity

	Full name:

	pylith.materials.RheologyPoroelasticity

	Journal name:

	rheologyporoelasticity

Abstract base class for bulk rheology of poroelastic material.

Pyre Facilities

	auxiliary_subfields: Discretization information for physical properties and state variables.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

meshio

	DataWriter

	DataWriterHDF5

	DataWriterHDF5Ext

	DataWriterVTK

	MeshIOAscii

	MeshIOCubit

	MeshIOObj

	MeshIOPetsc

	OutputObserver

	OutputPhysics

	OutputSoln

	OutputSolnBoundary

	OutputSolnDomain

	OutputSolnPoints

	OutputTrigger

	OutputTriggerStep

	OutputTriggerTime

	PointsList

DataWriter

	Full name:

	pylith.meshio.DataWriter

	Journal name:

	datawriter

Abstract base class writing solution, auxiliary, and derived subfields.

DataWriterHDF5

	Full name:

	pylith.meshio.DataWriterHDF5

	Journal name:

	datawriterhdf5

Writer of solution, auxiliary, and derived subfields to an HDF5 file.

Implements DataWriter.

Pyre Properties

	filename=<str>: Name of HDF5 file.

	default value: ‘’

	current value: ‘’, from {default}

Example

Example of setting DataWriterHDF5 Pyre properties and facilities in a parameter file.

[data_writer]
filename = domain_solution.h5

DataWriterHDF5Ext

	Full name:

	pylith.meshio.DataWriterHDF5Ext

	Journal name:

	datawriterhdf5

Writer of solution, auxiliary, and derived subfields to an HDF5 file with datasets stored in external binary files.

Implements DataWriter.

Pyre Properties

	filename=<str>: Name of HDF5 file.

	default value: ‘’

	current value: ‘’, from {default}

Example

Example of setting DataWriterHDF5Ext Pyre properties and facilities in a parameter file.

[data_writer]
filename = domain_solution.h5

DataWriterVTK

	Full name:

	pylith.meshio.DataWriterVTK

	Journal name:

	datawritervtk

Writer of solution, auxiliary, and derived subfields to a VTK file.

Implements DataWriter.

Pyre Properties

	filename=<str>: Name of VTK file.

	default value: ‘’

	current value: ‘’, from {default}

	float_precision=<int>: Precision of floating point values in output.

	default value: 6

	current value: 6, from {default}

	validator: (greater than 0)

	time_constant=<dimensional>: Values used to normalize time stamp in filename.

	default value: 1*s

	current value: 1*s, from {default}

	validator: (greater than 0*s)

	time_format=<str>: C style format string for time stamp in filename.

	default value: ‘%f’

	current value: ‘%f’, from {default}

Example

Example of setting DataWriterVTK Pyre properties and facilities in a parameter file.

[data_writer]
filename = domain_solution.vtk
time_format = %0.2f
time_constant = 1.0*year
float_precision = 6

MeshIOAscii

	Full name:

	pylith.meshio.MeshIOAscii

	Journal name:

	meshioascii

Reader for finite-element meshes using a simple ASCII format.

Warning

The coordinate system associated with the mesh must be a Cartesian coordinate system, such as a generic Cartesian coordinate system or a geographic projection.

Implements MeshIOObj.

Pyre Facilities

	coordsys: Coordinate system associated with mesh.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

Pyre Properties

	filename=<str>: Name of mesh file

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateFilename at 0x11f289670>

Example

Example of setting MeshIOAscii Pyre properties and facilities in a parameter file.

[pylithapp.mesh_generator.reader]
filename = mesh_quad.txt
coordsys.space_dim = 2

MeshIOCubit

	Full name:

	pylith.meshio.MeshIOCubit

	Journal name:

	meshiocubit

Reader for finite-element meshes from Exodus II files (usually from Cubit).

Warning

The coordinate system associated with the mesh must be a Cartesian coordinate system, such as a generic Cartesian coordinate system or a geographic projection.

Implements MeshIOObj.

Pyre Facilities

	coordsys: Coordinate system associated with mesh.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

Pyre Properties

	filename=<str>: Name of Cubit Exodus file.

	default value: ‘mesh.exo’

	current value: ‘mesh.exo’, from {default}

	validator: <function validateFilename at 0x1248de790>

	use_nodeset_names=<bool>: Use nodeset names instead of ids.

	default value: True

	current value: True, from {default}

Example

Example of setting MeshIOCubit Pyre properties and facilities in a parameter file.

[pylithapp.mesh_generator.reader]
filename = mesh_quad.exo
use_nodeset_names = True
coordsys.space_dim = 2

MeshIOObj

	Full name:

	pylith.meshio.MeshIOObj

	Journal name:

	meshio

Abstract base class for finite-element mesh readers.

MeshIOPetsc

	Full name:

	pylith.meshio.MeshIOPetsc

	Journal name:

	meshiopetsc

Python object for a variety of reading/writing finite-element meshes using PETSc.
Currently, the primary use of this object is to import meshes from Gmsh.

Warning

The coordinate system associated with the mesh must be a Cartesian coordinate system, such as a generic Cartesian coordinate system or a geographic projection.

Implements MeshIOObj.

Pyre Facilities

	coordsys: Coordinate system associated with mesh.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

Pyre Properties

	filename=<str>: Name of mesh file for reading with PETSc.

	default value: ‘’

	current value: ‘’, from {default}

	options_prefix=<str>: Name of PETSc options prefix for this mesh.

	default value: ‘’

	current value: ‘’, from {default}

OutputObserver

	Full name:

	pylith.meshio.OutputObserver

	Journal name:

	outputobserver

Abstract base class for managing output of solution information.

Pyre Facilities

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

OutputPhysics

	Full name:

	pylith.meshio.OutputPhysics

	Journal name:

	outputphysics

Output for objects implementing physics (materials and boundary conditions).

Tip

Most output information can be configured at the problem level using the ProblemDefaults Component.

Implements OutputObserver.

Pyre Facilities

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	data_fields=<list>: Names of solution, auxiliary, and derived subfields to include in data output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	info_fields=<list>: Names of auxiliary subfields to include in info output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

Example

Example of setting OutputPhysics Pyre properties and facilities in a parameter file.

[observer]
Skip two time steps between output.
output_trigger = pylith.meshio.OutputTriggerStep
output_trigger.num_skip = 2

Write output to HDF5 file with name `boundary_xpos.h5`.
writer = pylith.meshio.DataWriterHDF5
writer.filename = boundary_xpos.h5

output_basis_order = 1

OutputSoln

	Full name:

	pylith.meshio.OutputSoln

	Journal name:

	outputsoln

Abstract base class for output of solution subfields.

Implements OutputObserver.

Pyre Facilities

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	data_fields=<list>: Names of solution subfields to include in output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

OutputSolnBoundary

	Full name:

	pylith.meshio.OutputSolnBoundary

	Journal name:

	outputsolnsubset

Output of solution subfields over an external boundary.

Tip

Most output information can be configured at the problem level using the ProblemDefaults Component.

Implements OutputSoln.

Pyre Facilities

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	data_fields=<list>: Names of solution subfields to include in output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	label=<str>: Name of label identifier for external boundary.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateLabel at 0x11f366af0>

	label_value=<int>: Value of label identifier for external boundary (tag of physical group in Gmsh files).

	default value: 1

	current value: 1, from {default}

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

Example

Example of setting OutputSolnBoundary Pyre properties and facilities in a parameter file.

[observer]
data_fields = [displacement]

label = boundary_xpos

Skip two time steps between output.
output_trigger = pylith.meshio.OutputTriggerStep
output_trigger.num_skip = 2

Write output to HDF5 file with name `boundary_xpos.h5`.
writer = pylith.meshio.DataWriterHDF5
writer.filename = boundary_xpos.h5

output_basis_order = 1

OutputSolnDomain

	Full name:

	pylith.meshio.OutputSolnDomain

	Journal name:

	outputsolndomain

Output of solution subfields over the simulation domain.

Tip

Most output information can be configured at the problem level using the ProblemDefaults Component.

Implements OutputSoln.

Pyre Facilities

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	data_fields=<list>: Names of solution subfields to include in output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

Example

Example of setting OutputSolnDomain Pyre properties and facilities in a parameter file.

[observer]
data_fields = [displacement]

Skip two time steps between output.
output_trigger = pylith.meshio.OutputTriggerStep
output_trigger.num_skip = 2

Write output to HDF5 file with name `domain.h5`.
writer = pylith.meshio.DataWriterHDF5
writer.filename = domain.h5

output_basis_order = 1

OutputSolnPoints

	Full name:

	pylith.meshio.OutputSolnPoints

	Journal name:

	outputsolnpoints

Output of solution subfields at discrete points in the domain.

Tip

Most output information can be configured at the problem level using the ProblemDefaults Component.

Implements OutputSoln.

Pyre Facilities

	reader: Reader for points list.

	current value: ‘pointslist’, from {default}

	configurable as: pointslist, reader

	trigger: Trigger defining how often output is written.

	current value: ‘outputtriggerstep’, from {default}

	configurable as: outputtriggerstep, trigger

	writer: Writer for data.

	current value: ‘datawriterhdf5’, from {default}

	configurable as: datawriterhdf5, writer

Pyre Properties

	data_fields=<list>: Names of solution subfields to include in output.

	default value: [‘all’]

	current value: [‘all’], from {default}

	label=<str>: Label identifier for points (used in constructing default filenames).

	default value: ‘points’

	current value: ‘points’, from {default}

	output_basis_order=<int>: Basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

Example

Example of setting OutputSolnPoints Pyre properties and facilities in a parameter file.

[observer]
label = stations
data_fields = [displacement]

List of points where we want output.
reader = pylith.meshio.PointsList
reader.filename = stations.txt

Skip two time steps between output.
output_trigger = pylith.meshio.OutputTriggerStep
output_trigger.num_skip = 2

Write output to HDF5 file with name `domain.h5`.
writer = pylith.meshio.DataWriterHDF5
writer.filename = domain.h5

output_basis_order = 1

OutputTrigger

	Full name:

	pylith.meshio.OutputTrigger

	Journal name:

	outputtrigger

Abstract base class for managing how often output is written.

OutputTriggerStep

	Full name:

	pylith.meshio.OutputTriggerStep

	Journal name:

	outputtriggerstep

Define how often output is written in terms of solution steps.

Implements OutputTrigger.

Pyre Properties

	num_skip=<int>: Number of solution steps to skip between writes (0 means write every time step).

	default value: 0

	current value: 0, from {default}

	validator: (greater than or equal to 0)

Example

Example of setting OutputTriggerStep Pyre properties and facilities in a parameter file.

[output_trigger]
num_skip = 2

OutputTriggerTime

	Full name:

	pylith.meshio.OutputTriggerTime

	Journal name:

	outputtriggertime

Define how often output is written in terms of elasped simulation time.

Tip

Due to floating point roundoff, it is usually a good idea to use a value that is a fraction of a time step smaller than the desired value.

Implements OutputTrigger.

Pyre Properties

	elapsed_time=<dimensional>: Elapsed time between writes.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting OutputTriggerTime Pyre properties and facilities in a parameter file.

[output_trigger]
elapsed_time = 0.9999*year

PointsList

	Full name:

	pylith.meshio.PointsList

	Journal name:

	pointslist

Reader for a list of points from an ASCII file.

See also

See OutputSolnPoints Component.

Pyre Facilities

	coordsys: Coordinate system associated with points.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

Pyre Properties

	comment_delimiter=<str>: Delimiter for comments.

	default value: ‘#’

	current value: ‘#’, from {default}

	filename=<str>: Filename for list of points.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateFilename at 0x11f3209d0>

	value_delimiter=<str>: Delimiter used to separate values.

	default value: None

	current value: None, from {default}

Example

Example of setting PointsList Pyre properties and facilities in a parameter file.

[points]
filename = stations.txt
comment_delimiter = #
value_delimiter = ,

coordsys = spatialdata.geocoords.CSCart
coordsys.space_dim = 2

problems

	GreensFns

	InitialCondition

	InitialConditionDomain

	InitialConditionPatch

	Physics

	Problem

	ProblemDefaults

	ProgressMonitor

	ProgressMonitorStep

	ProgressMonitorTime

	SingleProblem

	SolnDisp

	SolnDispLagrange

	SolnDispPres

	SolnDispPresLagrange

	SolnDispPresTracStrain

	SolnDispPresTracStrainVelPdotTdot

	SolnDispPresVel

	SolnDispVel

	SolnDispVelLagrange

	Solution

	SolutionSubfield

	SubfieldDisplacement

	SubfieldLagrangeFault

	SubfieldPressure

	SubfieldPressureDot

	SubfieldTemperature

	SubfieldTraceStrain

	SubfieldTraceStrainDot

	SubfieldVelocity

	TimeDependent

GreensFns

	Full name:

	pylith.problems.GreensFns

	Journal name:

	greensfns

Static Green’s function problem type with each Green’s function corresponding to a fault slip impulses.

Implements Problem.

Pyre Facilities

	bc: Boundary conditions.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, bc

	defaults: Default options for problem.

	current value: ‘problem_defaults’, from {default}

	configurable as: problem_defaults, defaults

	gravity_field: Database used for gravity field.

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, gravity_field

	interfaces: Interior surfaces with constraints or constitutive models.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, interfaces

	materials: Materials in problem.

	current value: ‘homogeneous’, from {default}

	configurable as: homogeneous, materials

	normalizer: Nondimensionalizer for problem.

	current value: ‘nondimelasticquasistatic’, from {default}

	configurable as: nondimelasticquasistatic, normalizer

	petsc_defaults: Flags controlling which default PETSc options to use.

	current value: ‘petscdefaults’, from {default}

	configurable as: petscdefaults, petsc_defaults

	progress_monitor: Simple progress monitor via text file.

	current value: ‘progressmonitorstep’, from {default}

	configurable as: progressmonitorstep, progress_monitor

	solution: Solution field for problem.

	current value: ‘solution’, from {default}

	configurable as: solution

	solution_observers: Observers (e.g., output) for solution.

	current value: ‘singlesolnobserver’, from {default}

	configurable as: singlesolnobserver, solution_observers

Pyre Properties

	formulation=<str>: Formulation for equations.

	default value: ‘quasistatic’

	current value: ‘quasistatic’, from {default}

	validator: (in [‘quasistatic’, ‘dynamic’, ‘dynamic_imex’])

	label=<str>: Name of label identifier for fault surface on which to impose impulses.

	default value: ‘fault’

	current value: ‘fault’, from {default}

	label_value=<int>: Value of label identifier for fault surface on which to impose impulses.

	default value: 1

	current value: 1, from {default}

	solver=<str>: Type of solver to use [‘linear’, ‘nonlinear’].

	default value: ‘nonlinear’

	current value: ‘nonlinear’, from {default}

	validator: (in [‘linear’, ‘nonlinear’])

Example

Example of setting GreensFns Pyre properties and facilities in a parameter file.

[pylithapp]
problem = pylith.problems.GreensFns

[pylithapp.greensfns]
label = fault
label_value = 1

Set appropriate default solver settings.
set_solver_defaults = True

interfaces = [fault]
interfaces.fault = pylith.faults.FaultCohesiveImpulses

[pylithapp.greensfns.interfaces.fault]
label = fault
label_value = 20

Impulses for left-lateral slip (dof=1)
impulse_dof = [1]
threshold = 0.5

Create impulses at all points on the fault by specifying a uniform amplitude of 1.0.
Impulses will be applied at any location with a slip component greater than the threshold.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Slip impulse amplitude
db_auxiliary_field.values = [slip_left_lateral, slip_opening]
db_auxiliary_field.data = [1.0*m, 0.0*m]

Represent the impulse as a linear variation in slip centered on each point.
auxiliary_subfields.slip.basis_order = 1

[pylithapp.greensfns.petsc_defaults]
solver = True
monitors = True

InitialCondition

	Full name:

	pylith.problems.InitialCondition

	Journal name:

	initialconditions

Abstract base class for specifying initial conditions for the solution.

Pyre Properties

	subfields=<list>: Names of solution subfields for initial condition.

	default value: [‘displacement’]

	current value: [‘displacement’], from {default}

InitialConditionDomain

	Full name:

	pylith.problems.InitialConditionDomain

	Journal name:

	initialconditionsdomain

Initial conditions for the solution over the entire domain.

Implements InitialCondition.

Pyre Facilities

	db: Spatial database with values for initial condition.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db

Pyre Properties

	subfields=<list>: Names of solution subfields for initial condition.

	default value: [‘displacement’]

	current value: [‘displacement’], from {default}

Example

Example of setting InitialConditionDomain Pyre properties and facilities in a parameter file.

Create a single initial condition over the domain.
[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.SimpleGridDB
db.description = Initial conditions over domain
db.filename = sheardisp_ic.spatialdb

InitialConditionPatch

	Full name:

	pylith.problems.InitialConditionPatch

	Journal name:

	initialconditionspatch

Initial conditions over a portion of the domain (patch).

Implements InitialCondition.

Pyre Facilities

	db: Spatial database with values for initial condition.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db

Pyre Properties

	label=<str>: Name of label for patch.

	default value: ‘material-id’

	current value: ‘material-id’, from {default}

	label_value=<int>: Value of label associated with initial condition patch, usually the material label value.

	default value: 1

	current value: 1, from {default}

	subfields=<list>: Names of solution subfields for initial condition.

	default value: [‘displacement’]

	current value: [‘displacement’], from {default}

Example

Example of setting InitialConditionPatch Pyre properties and facilities in a parameter file.

Create separate initial conditions for two materials.
This is often useful if the materials have different properties.
[pylithapp.problem]
ic = [mat1, mat2]
ic.mat1 = pylith.problems.InitialConditionPatch
ic.mat2 = pylith.problems.InitialConditionPatch

[pylithapp.problem.ic.mat1]
label_value = 1
db = spatialdata.spatialdb.SimpleGridDB
db.description = Initial conditions over material 1
db.filename = shearmat1_ic.spatialdb

[pylithapp.problem.ic.mat2]
label_value = 2
db = spatialdata.spatialdb.SimpleGridDB
db.description = Initial conditions over material 2
db.filename = shearmat2_ic.spatialdb

Physics

	Full name:

	pylith.problems.Physics

	Journal name:

	physics

Abstract base class for objects defining physics.

Pyre Facilities

	auxiliary_subfields: Discretization information for auxiliary subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, auxiliary_subfields

	db_auxiliary_field: Database for physical property parameters.

	current value: ‘simpledb’, from {default}

	configurable as: simpledb, db_auxiliary_field

	derived_subfields: Discretization of derived subfields.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, derived_subfields

	observers: Observers (e.g., output).

	current value: ‘singlephysicsobserver’, from {default}

	configurable as: singlephysicsobserver, observers

Problem

	Full name:

	pylith.problems.Problem

	Journal name:

	problem

Abstract base class for a problem.

The default formulation, solution field, and scales for nondimensionalization are appropriate for solving the quasi-static elasticity equation.

By default, we use the nonlinear solver.
This facilitates verifying that the residual and Jacobian are consistent.
If the nonlinear (SNES) solver requires multiple iterations to converge for these linear problems, then we know there is an error in the problem setup.

Pyre Facilities

	bc: Boundary conditions.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, bc

	defaults: Default options for problem.

	current value: ‘problem_defaults’, from {default}

	configurable as: problem_defaults, defaults

	gravity_field: Database used for gravity field.

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, gravity_field

	interfaces: Interior surfaces with constraints or constitutive models.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, interfaces

	materials: Materials in problem.

	current value: ‘homogeneous’, from {default}

	configurable as: homogeneous, materials

	normalizer: Nondimensionalizer for problem.

	current value: ‘nondimelasticquasistatic’, from {default}

	configurable as: nondimelasticquasistatic, normalizer

	petsc_defaults: Flags controlling which default PETSc options to use.

	current value: ‘petscdefaults’, from {default}

	configurable as: petscdefaults, petsc_defaults

	solution: Solution field for problem.

	current value: ‘solution’, from {default}

	configurable as: solution

	solution_observers: Observers (e.g., output) for solution.

	current value: ‘singlesolnobserver’, from {default}

	configurable as: singlesolnobserver, solution_observers

Pyre Properties

	formulation=<str>: Formulation for equations.

	default value: ‘quasistatic’

	current value: ‘quasistatic’, from {default}

	validator: (in [‘quasistatic’, ‘dynamic’, ‘dynamic_imex’])

	solver=<str>: Type of solver to use [‘linear’, ‘nonlinear’].

	default value: ‘nonlinear’

	current value: ‘nonlinear’, from {default}

	validator: (in [‘linear’, ‘nonlinear’])

ProblemDefaults

	Full name:

	pylith.problems.ProblemDefaults

	Journal name:

	problem_defaults

Default options for a problem.
Specifying defaults at the problem level (here) will override defaults for individual components.
Non-default values specified for individual components will override the problem defaults (specified here).

Pyre Properties

	name=<str>: Name for the problem (used with output_directory for default output filenames).

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateName at 0x124c42280>

	output_basis_order=<int>: Default basis order for output.

	default value: 1

	current value: 1, from {default}

	validator: (in [0, 1])

	output_directory=<str>: Directory for output.

	default value: ‘output’

	current value: ‘output’, from {default}

	quadrature_order=<int>: Finite-element quadrature order.

	default value: 1

	current value: 1, from {default}

	validator: (greater than 0)

Example

Example of setting ProblemDefaults Pyre properties and facilities in a parameter file.

[pylithapp.problem.defaults]
output_directory = output
name = step01
quadrature_order = 1
output_basis_order = 0

ProgressMonitor

	Full name:

	pylith.problems.ProgressMonitor

	Journal name:

	progressmonitor

Abstract base class for simulation progress monitor.

Pyre Properties

	filename=<str>: Name of output file.

	default value: ‘progress.txt’

	current value: ‘progress.txt’, from {default}

	update_percent=<float>: Frequency of progress updates (percent).

	default value: 5.0

	current value: 5.0, from {default}

	validator: (greater than 0)

ProgressMonitorStep

	Full name:

	pylith.problems.ProgressMonitorStep

	Journal name:

	progressmonitorstep

Progress monitor for problems with a given number of steps, such as Green’s functions problem.

Implementes ProgressMonitor.

Pyre Properties

	filename=<str>: Name of output file.

	default value: ‘progress.txt’

	current value: ‘progress.txt’, from {default}

	update_percent=<float>: Frequency of progress updates (percent).

	default value: 5.0

	current value: 5.0, from {default}

	validator: (greater than 0)

Example

Example of setting ProgressMonitorStep Pyre properties and facilities in a parameter file.

[pylithapp.timedependent.progress_monitor]
filename = output/greensfns01-progress.txt

ProgressMonitorTime

	Full name:

	pylith.problems.ProgressMonitorTime

	Journal name:

	progressmonitortime

Progress monitor for time-dependent problem.

Pyre Properties

	filename=<str>: Name of output file.

	default value: ‘progress.txt’

	current value: ‘progress.txt’, from {default}

	t_units=<str>: Units used for simulation time in output.

	default value: ‘year’

	current value: ‘year’, from {default}

	update_percent=<float>: Frequency of progress updates (percent).

	default value: 5.0

	current value: 5.0, from {default}

	validator: (greater than 0)

Example

Example of setting ProgressMonitorTime Pyre properties and facilities in a parameter file.

[pylithapp.timedependent.progress_monitor]
filename = output/step01-progress.txt
t_units = year

SingleProblem

	Full name:

	pylith.problems.SingleProblem

	Journal name:

	singleproblem

Pyre Facilities

	problem: Single problem to solve.

	current value: ‘timedependent’, from {default}

	configurable as: timedependent, problem

SolnDisp

	Full name:

	pylith.problems.SolnDisp

	Journal name:

	solndisp

Container for solution subfields with displacement subfield.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

SolnDispLagrange

	Full name:

	pylith.problems.SolnDispLagrange

	Journal name:

	solndisplagrange

Container for solution subfields with displacement and fault Lagrange multiplier subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	lagrange_fault: Fault Lagrange multiplier subfield.

	current value: ‘subfieldlagrangefault’, from {default}

	configurable as: subfieldlagrangefault, lagrange_fault

Example

Example of setting SolnDispLagrange Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispLagrange

SolnDispPres

	Full name:

	pylith.problems.SolnDispPres

	Journal name:

	solndisppres

Container for solution subfields with displacement and pressure subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	pressure: Pressure subfield.

	current value: ‘subfieldpressure’, from {default}

	configurable as: subfieldpressure, pressure

Example

Example of setting SolnDispPres Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispPres

SolnDispPresLagrange

	Full name:

	pylith.problems.SolnDispPresLagrange

	Journal name:

	solndisppres

Container for solution subfields with displacement, pressure, and fault Lagrange multiplier subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	lagrange_fault: Fault Lagrange multiplier subfield.

	current value: ‘subfieldlagrangefault’, from {default}

	configurable as: subfieldlagrangefault, lagrange_fault

	pressure: Pressure subfield.

	current value: ‘subfieldpressure’, from {default}

	configurable as: subfieldpressure, pressure

Example

Example of setting SolnDispPresLagrange Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispPresLagrange

SolnDispPresTracStrain

	Full name:

	pylith.problems.SolnDispPresTracStrain

	Journal name:

	solndispprestracstrain

Container for solution subfields with displacement, pore pressure, and trace strain subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	pressure: Pressure subfield.

	current value: ‘subfieldpressure’, from {default}

	configurable as: subfieldpressure, pressure

	trace_strain: Trace strain subfield.

	current value: ‘subfieldtracestrain’, from {default}

	configurable as: subfieldtracestrain, trace_strain

Example

Example of setting SolnDispPresTracStrain Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispPresTracStrain

SolnDispPresTracStrainVelPdotTdot

	Full name:

	pylith.problems.SolnDispPresTracStrainVelPdotTdot

	Journal name:

	solndispprestracstrainveltdotpdot

Container for solution subfields with displacement, pore pressure, and trace strain subfields, along with their time derivatices.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	pressure: Pressure subfield.

	current value: ‘subfieldpressure’, from {default}

	configurable as: subfieldpressure, pressure

	pressure_t: Pressure_t subfield.

	current value: ‘subfieldpressure_t’, from {default}

	configurable as: subfieldpressure_t, pressure_t

	trace_strain: Trace strain subfield.

	current value: ‘subfieldtracestrain’, from {default}

	configurable as: subfieldtracestrain, trace_strain

	trace_strain_t: Trace strain_t subfield.

	current value: ‘subfieldtracestrain_t’, from {default}

	configurable as: subfieldtracestrain_t, trace_strain_t

	velocity: Velocity subfield.

	current value: ‘subfieldvelocity’, from {default}

	configurable as: subfieldvelocity, velocity

Example

Example of setting SolnDispPresTracStrainVelPdotTdot Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispPresTracStrainVelPdotTdot

SolnDispPresVel

	Full name:

	pylith.problems.SolnDispPresVel

	Journal name:

	solndisppresvel

Container for solution subfields with displacement, pore pressure, and velocity subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	pressure: Pressure subfield.

	current value: ‘subfieldpressure’, from {default}

	configurable as: subfieldpressure, pressure

	velocity: Velocity subfield.

	current value: ‘subfieldvelocity’, from {default}

	configurable as: subfieldvelocity, velocity

Example

Example of setting SolnDispPresVel Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispPresVel

SolnDispVel

	Full name:

	pylith.problems.SolnDispVel

	Journal name:

	solndispvel

Container for solution subfields with displacement and velocity subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	velocity: Velocity subfield.

	current value: ‘subfieldvelocity’, from {default}

	configurable as: subfieldvelocity, velocity

Example

Example of setting SolnDispVel Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispVel

SolnDispVelLagrange

	Full name:

	pylith.problems.SolnDispVelLagrange

	Journal name:

	solndispvel

Container for solution subfields with displacement, velocity, and fault Lagrange multiplier subfields.

Pyre Facilities

	displacement: Displacement subfield.

	current value: ‘subfielddisplacement’, from {default}

	configurable as: subfielddisplacement, displacement

	lagrange_fault: Fault Lagrange multiplier subfield.

	current value: ‘subfieldlagrangefault’, from {default}

	configurable as: subfieldlagrangefault, lagrange_fault

	velocity: Velocity subfield.

	current value: ‘subfieldvelocity’, from {default}

	configurable as: subfieldvelocity, velocity

Example

Example of setting SolnDispVelLagrange Pyre properties and facilities in a parameter file.

[pylithapp.problem]
solution = pylith.problems.SolnDispVelLagrange

Solution

	Full name:

	pylith.problems.Solution

	Journal name:

	solution

Abstract base class for solution field for problem.

Pyre Facilities

	subfields: Subfields in solution.

	current value: ‘solndisp’, from {default}

	configurable as: solndisp, subfields

SolutionSubfield

	Full name:

	pylith.problems.SolutionSubfield

	Journal name:

	solution_subfield

Base class for defining attributes of a subfield within a field.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

SubfieldDisplacement

	Full name:

	pylith.problems.SubfieldDisplacement

	Journal name:

	subfielddisplacement

Object for defining attributes of the displacement solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘displacement’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldDisplacement Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.displacement]
alias = displacement
basis_order = 1

SubfieldLagrangeFault

	Full name:

	pylith.problems.SubfieldLagrangeFault

	Journal name:

	subfieldlagrangefault

Object for defining attributes of the fault Lagrange multiplier solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘lagrange_multiplier_fault’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldLagrangeFault Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.lagrange_fault]
alias = lagrange_multiplier_fault
basis_order = 1

SubfieldPressure

	Full name:

	pylith.problems.SubfieldPressure

	Journal name:

	subfieldpressure

Object for defining attributes of the pressure solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘pressure’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldPressure Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.pressure]
alias = pressure
basis_order = 1

SubfieldPressureDot

	Full name:

	pylith.problems.SubfieldPressureDot

	Journal name:

	subfieldpressure_t

Object for defining attributes of the time derivative of pressure solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘pressure_t’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldPressureDot Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.pressure_t]
alias = pressure_t
basis_order = 1

SubfieldTemperature

	Full name:

	pylith.problems.SubfieldTemperature

	Journal name:

	subfieldtemperature

Object for defining attributes of the temperature solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘temperature’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldTemperature Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.temperature]
alias = absolute_temperature
basis_order = 1

SubfieldTraceStrain

	Full name:

	pylith.problems.SubfieldTraceStrain

	Journal name:

	subfieldtracestrain

Object for defining attributes of the trace strain solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘trace_strain’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldTraceStrain Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.trace_strain]
alias = trace_strain
basis_order = 1

SubfieldTraceStrainDot

	Full name:

	pylith.problems.SubfieldTraceStrainDot

	Journal name:

	subfieldtracestrain_t

Object for defining attributes of the time derivative of trace strain solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘trace_strain_t’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldTraceStrainDot Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.trace_strain_t]
alias = trace_strain_t
basis_order = 1

SubfieldVelocity

	Full name:

	pylith.problems.SubfieldVelocity

	Journal name:

	subfieldvelocity

Object for defining attributes of the velocity solution subfield.

Implements SolutionSubfield.

Pyre Properties

	alias=<str>: Name for subfield.

	default value: ‘’

	current value: ‘velocity’, from {file=’/software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pythia/pyre/inventory/ConfigurableClass.py’, line=26, function=’set’}

	validator: <function validateAlias at 0x124c314c0>

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

Example

Example of setting SubfieldVelocity Pyre properties and facilities in a parameter file.

[pylithapp.problems.solution.subfields.velocity]
alias = velocity
basis_order = 1

TimeDependent

	Full name:

	pylith.problems.TimeDependent

	Journal name:

	timedependent

Static, quasistatic, or dynamic time-dependent problem.

Implements Problem.

Pyre Facilities

	bc: Boundary conditions.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, bc

	defaults: Default options for problem.

	current value: ‘problem_defaults’, from {default}

	configurable as: problem_defaults, defaults

	gravity_field: Database used for gravity field.

	current value: ‘nullcomponent’, from {default}

	configurable as: nullcomponent, gravity_field

	ic: Initial conditions.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, ic

	interfaces: Interior surfaces with constraints or constitutive models.

	current value: ‘emptybin’, from {default}

	configurable as: emptybin, interfaces

	materials: Materials in problem.

	current value: ‘homogeneous’, from {default}

	configurable as: homogeneous, materials

	normalizer: Nondimensionalizer for problem.

	current value: ‘nondimelasticquasistatic’, from {default}

	configurable as: nondimelasticquasistatic, normalizer

	petsc_defaults: Flags controlling which default PETSc options to use.

	current value: ‘petscdefaults’, from {default}

	configurable as: petscdefaults, petsc_defaults

	progress_monitor: Simple progress monitor via text file.

	current value: ‘progressmonitortime’, from {default}

	configurable as: progressmonitortime, progress_monitor

	solution: Solution field for problem.

	current value: ‘solution’, from {default}

	configurable as: solution

	solution_observers: Observers (e.g., output) for solution.

	current value: ‘singlesolnobserver’, from {default}

	configurable as: singlesolnobserver, solution_observers

Pyre Properties

	end_time=<dimensional>: End time for problem.

	default value: 3.15576e+06*s

	current value: 3.15576e+06*s, from {default}

	validator: (greater than or equal to 0*s)

	formulation=<str>: Formulation for equations.

	default value: ‘quasistatic’

	current value: ‘quasistatic’, from {default}

	validator: (in [‘quasistatic’, ‘dynamic’, ‘dynamic_imex’])

	initial_dt=<dimensional>: Initial time step.

	default value: 3.15576e+07*s

	current value: 3.15576e+07*s, from {default}

	validator: (greater than 0*s)

	max_timesteps=<int>: Maximum number of time steps.

	default value: 20000

	current value: 20000, from {default}

	validator: (greater than 0)

	notify_observers_ic=<bool>: Notify observers of solution with initial conditions.

	default value: False

	current value: False, from {default}

	solver=<str>: Type of solver to use [‘linear’, ‘nonlinear’].

	default value: ‘nonlinear’

	current value: ‘nonlinear’, from {default}

	validator: (in [‘linear’, ‘nonlinear’])

	start_time=<dimensional>: Start time for problem.

	default value: 0*s

	current value: 0*s, from {default}

Example

Example of setting TimeDependent Pyre properties and facilities in a parameter file.

Set boundary conditions, faults, and materials
bc = [boundary_xpos, boundary_xneg]
interfaces = [san_andreas, hayward]
materials = [crust, mantle]

Create an initial condition over the domain
ic = [domain]

Turn on gravitational body forces
gravity_field = spatialdata.spatialdb.GravityField

Set the normalizer for nondimensionalizing the problem
normalizer = spatialdata.units.NondimElasticQuasistatic

Set the subfields in the solution
solution = = pylith.problems.SolnDispLagrange

Output the solution for the domain and ground surface
solution_observers = [domain, ground_surface]

Use the quasistatic formulation, linear solver, and set appropriate default solver settings.
formulation = quasistatic
solver = linear

Use a maximum of 20 time steps to simulation from -0.5 years to 2.0 years with an initial time step of 0.5 years.
The first time step will compute the solution at time 0.
start_time = -0.5*year
end_time = 2.0*year
initial_dt = 0.5*year
max_timesteps = 20

[pylithapp.greensfns.petsc_defaults]
solver = True
monitors = True

testing

	UnitTestApp

UnitTestApp

	Full name:

	pylith.testing.UnitTestApp

	Journal name:

	unittestapp

Pyre Facilities

	weaver: the pretty printer of my configuration as an XML document

	current value: ‘weaver’, from {default}

	configurable as: weaver

Pyre Properties

	typos=<str>: specifies the handling of typos in the names of properties and facilities

	default value: ‘strict’

	current value: ‘strict’, from {default}

	validator: (in [‘relaxed’, ‘strict’, ‘pedantic’])

topology

	Distributor

	MeshGenerator

	MeshImporter

	MeshImporterDist

	MeshRefiner

	RefineUniform

	Subfield

Distributor

	Full name:

	pylith.topology.Distributor

	Journal name:

	mesh_distributor

Distributor of the the mesh among processes.

Pyre Facilities

	data_writer: Data writer for partition information.

	current value: ‘datawritervtk’, from {default}

	configurable as: datawritervtk, data_writer

Pyre Properties

	partitioner=<str>: Name of mesh partitioner.

	default value: ‘chaco’

	current value: ‘chaco’, from {default}

	validator: (in [‘chaco’, ‘metis’, ‘parmetis’, ‘simple’])

	write_partition=<bool>: Write partition information to file.

	default value: False

	current value: False, from {default}

Example

Example of setting Distributor Pyre properties and facilities in a parameter file.

[pylithapp.mesh_generator.distributor]
partitioner = parmetis

MeshGenerator

	Full name:

	pylith.topology.MeshGenerator

	Journal name:

	meshgenerator

Abstract base class for mesh generator.

MeshImporter

	Full name:

	pylith.topology.MeshImporter

	Journal name:

	meshimporter

Base class for reading a finite-element mesh from files.

Implements MeshGenerator.

Pyre Facilities

	distributor: Distributes mesh among processes.

	current value: ‘mesh_distributor’, from {default}

	configurable as: mesh_distributor, distributor

	reader: Reader for mesh files.

	current value: ‘meshioascii’, from {default}

	configurable as: meshioascii, reader

	refiner: Performs uniform global mesh refinement after distribution among processes (default is no refinement).

	current value: ‘refiner’, from {default}

	configurable as: refiner

Pyre Properties

	check_topology=<bool>: Check topology of imported mesh.

	default value: True

	current value: True, from {default}

	reorder_mesh=<bool>: Reorder mesh using reverse Cuthill-McKee.

	default value: True

	current value: True, from {default}

Example

Example of setting MeshImporter Pyre properties and facilities in a parameter file.

[pylithapp.meshimporter]
reorder_mesh = True
check_topology = True
reader = pylith.meshio.MeshIOCubit
refiner = pylith.topology.RefineUniform

MeshImporterDist

	Full name:

	pylith.topology.MeshImporterDist

	Journal name:

	meshimporter

Read a finite-element mesh in parallel.

Danger

Implementation is incomplete.

Pyre Facilities

	reader: Mesh reader.

	current value: ‘meshioascii’, from {default}

	configurable as: meshioascii, reader

	refiner: Mesh refiner.

	current value: ‘refiner’, from {default}

	configurable as: refiner

MeshRefiner

	Full name:

	pylith.topology.MeshRefiner

	Journal name:

	refiner

Abstract base class for refining a mesh in parallel.

RefineUniform

	Full name:

	pylith.topology.RefineUniform

	Journal name:

	refineuniform

Uniform global mesh refinement in parallel.

Implements MeshRefiner.

Pyre Properties

	levels=<int>: Number of refinement levels.

	default value: 1

	current value: 1, from {default}

	validator: (greater than or equal to 1)

Example

Example of setting RefineUniform Pyre properties and facilities in a parameter file.

Refine mesh twice to reduce size of cell edges by a factor of 4.
[pylithapp.mesh_generator.refiner]
levels = 2

Subfield

	Full name:

	pylith.topology.Subfield

	Journal name:

	subfield

Python object for defining discretization of a subfield.

Pyre Properties

	basis_order=<int>: Order of basis functions.

	default value: 1

	current value: 1, from {default}

	cell_basis=<str>: Type of cell basis functions (simplex, tensor, or default). Default is to use type matching cell type.

	default value: ‘default’

	current value: ‘default’, from {default}

	validator: (in [‘simplex’, ‘tensor’, ‘default’])

	dimension=<int>: Topological dimension associated with subfield (=-1 will use dimension of domain).

	default value: -1

	current value: -1, from {default}

	finite_element_space=<str>: Finite-element space (polynomial or point). Point space corresponds to delta functions at quadrature points.

	default value: ‘polynomial’

	current value: ‘polynomial’, from {default}

	validator: (in [‘polynomial’, ‘point’])

	is_basis_continous=<bool>: Is basis continuous?

	default value: True

	current value: True, from {default}

	quadrature_order=<int>: Order of numerical quadrature.

	default value: -1

	current value: -1, from {default}

utils

	CollectVersionInfo

	DumpParameters

	DumpParametersAscii

	DumpParametersJson

	EmptyBin

	NullComponent

	PetscDefaults

	PetscManager

	PropertyList

	SimulationMetadata

CollectVersionInfo

	Full name:

	pylith.utils.CollectVersionInfo

	Journal name:

	collectversioninfo

Collect version information for PyLith and its dependencies.

DumpParameters

	Full name:

	pylith.utils.DumpParameters

	Journal name:

	dumpparamters

Abstract base class for dumping PyLith parameter information to a file.

DumpParametersAscii

	Full name:

	pylith.utils.DumpParametersAscii

	Journal name:

	dumpparamters

Dump PyLith parameter information to an ASCII file.

Implements DumpParameters.

Pyre Properties

	filename=<str>: Name of file written with parameters.

	default value: ‘pylith_paramters.txt’

	current value: ‘pylith_paramters.txt’, from {default}

	indent=<int>: Nmber of spaces to indent.

	default value: 4

	current value: 4, from {default}

	verbose=<bool>: Include description, location, and aliases.

	default value: True

	current value: True, from {default}

Example

Example of setting DumpParametersAscii Pyre properties and facilities in a parameter file.

[pylithapp]
dump_parameters = pylith.utils.DumpParametersAscii

[pylithapp.dump_parameters]
filename = output/parameters.txt
verbose = True

DumpParametersJson

	Full name:

	pylith.utils.DumpParametersJson

	Journal name:

	dumpparamters

Dump PyLith parameter information to an ASCII file.

Implements DumpParameters.

Pyre Properties

	filename=<str>: Name of file written with parameters.

	default value: ‘pylith_parameters.json’

	current value: ‘pylith_parameters.json’, from {default}

	indent=<int>: Nmber of spaces to indent, use a negative number for no newlines.

	default value: 4

	current value: 4, from {default}

	style=<str>: Style of JSON file [compact, normal].

	default value: ‘normal’

	current value: ‘normal’, from {default}

	validator: (in [‘normal’, ‘compact’])

Example

Example of setting DumpParametersJson Pyre properties and facilities in a parameter file.

[pylithapp]
dump_parameters = pylith.utils.DumpParametersJson

[pylithapp.dump_parameters]
filename = output/parameters.json
style = normal
verbose = True

EmptyBin

	Full name:

	pylith.utils.EmptyBin

	Journal name:

	emptybin

Empty container for a collection of objects.

NullComponent

	Full name:

	pylith.utils.NullComponent

	Journal name:

	nullcomponent

Empty Pyre component.

PetscDefaults

	Full name:

	pylith.utils.PetscDefaults

	Journal name:

	petscdefaults

Flags controlling use of default PETSc settings.
No user-specified settings will be overwritten.

Pyre Properties

	monitors=<bool>: Use default solver monitors.

	default value: True

	current value: True, from {default}

	parallel=<bool>: Use solver settings normally used when running in parallel.

	default value: False

	current value: False, from {default}

	solver=<bool>: Use default solver settings based on governing equations.

	default value: True

	current value: True, from {default}

	testing=<bool>: Use default PETSc testingging options.

	default value: False

	current value: False, from {default}

Example

Example of setting PetscDefaults Pyre properties and facilities in a parameter file.

[pylithapp.problem.petsc_defaults]
solver = True
monitors = True
parallel = False
testing = False

PetscManager

	Full name:

	pylith.utils.PetscManager

	Journal name:

	petsc

Manage PETSc options.

Example

Example of setting PetscManager Pyre properties and facilities in a parameter file.

[pylithapp.petsc]
ts_monitor = true
ksp_monitor = true
ksp_converged_reason = true
snes_monitor = true
snes_converged_reason = true
snes_linesearch_monitor = true

PropertyList

	Full name:

	pylith.utils.PropertyList

	Journal name:

	propertylist

Container for holding a list of items (one per line).

SimulationMetadata

	Full name:

	pylith.utils.SimulationMetadata

	Journal name:

	metadata

Metadata for simulation.

When using base to specify other files with metadata, the other files will append to the keywords and features lists, whereas other metadata will be overwritten (the same behavior as other Pyre properties).

Pyre Properties

	arguments=<list>: Command line arguments for running simulation.

	default value: []

	current value: [], from {default}

	authors=<list>: Creator(s) of simulation.

	default value: []

	current value: [], from {default}

	base=<list>: Parameter files with metadata that complement this metadata.

	default value: []

	current value: [], from {default}

	description=<str>: Description of simulation.

	default value: ‘’

	current value: ‘’, from {default}

	validator: <function notEmptyString at 0x124cdf820>

	features=<list>: PyLith features used in simulation.

	default value: []

	current value: [], from {default}

	keywords=<list>: Keywords describing simulation.

	default value: []

	current value: [], from {default}

	pylith_version=<list>: PyLith versions compatible with simulation input files.

	default value: []

	current value: [], from {default}

	version=<str>: Version number for simulation.

	default value: ‘’

	current value: ‘’, from {default}

Example

Example of setting SimulationMetadata Pyre properties and facilities in a parameter file.

[pylithapp.metadata]
base = [pylithapp.cfg]
description = Axial extension using Dirichlet boundary conditions.
keywords = [example, 2D, box, axial extension]
features = [
 Quadrilateral cells,
 pylith.meshio.MeshIOAscii,
 pylith.problems.TimeDependent,
 pylith.materials.Elasticity,
 pylith.materials.IsotropicLinearElasticity,
 spatialdata.spatialdb.UniformDB,
 pylith.meshio.DataWriterHDF5
]
authors = [Brad Aagaard]
version = 1.0.0
arguments = [step01_axialdisp.cfg]
pylith_version = [>=3.0, <4.0]

Examples

Overview

This section includes several suites of examples available in the examples directory.
Each suite includes several “steps” which are examples that increase in complexity from one “step” to the next.
In some cases, a later step may make use of output from an earlier step; these cases are clearly documented.
Table 35 classifies the level of difficulty of each example suite and provides a general description of the type of problems discussed.

Table 35 Overview of example suites.

	Example Suite

	Difficulty

	Description

	box-2d

	novice

	Simple axial and shear deformation in static and quasi-static simulations in 2D box with a mesh in an ASCII text file.

	box-3d

	novice

	Same as 2d/box but with a 3D box and a mesh from Gmsh or Cubit.

	strikeslip-2d

	beginner

	Prescribed coseismic slip and multiple earthquake ruptures in 2D with a mesh from Gmsh or Cubit.

	reverse-2d

	beginner

	Gravity, surface loads, and prescribed coseismic slip on multiple reverse faults in 2D with a mesh from Gmsh or Cubit.

	subduction-2d

	intermediate

	Coseismic, postseismic, and creep deformation using a 2D subduction zone cross-section with a mesh from Gmsh or Cubit.

	subduction-3d

	intermediate

	Close to research-complexity for a 3D subduction zone with a mesh from Cubit.

	magma-2d

	intermediate

	Magma reservoir using poroelasticity.

	troubleshooting-2d

	novice

	Troubleshooting errors in simulation in put files.

The subduction-3d example suite is the most advanced.
Users wanting to use PyLith in their research should work through relevant beginner examples and then the subduction-3d examples.

Tip

You can use the pylith_cfgsearch utility (see Utilities) to search for examples based on keywords and features.

Prerequisites

Before you begin any of the examples, you will need to install PyLith following the instructions in Installation.
You should also read Running PyLith.
Complete sets of input files are included in the examples.
However, if you wish to generate the finite-element meshes yourself, you will also need Gmsh (available from https://gmsh.info and included in the PyLith binary package), Coreform Cubit (available from https://coreform.com/), or CUBIT (available to US federal government agencies from https://cubit.sandia.gov/).
The ParaView https://www.paraview.org/ visualization package may be used to view simulation results.
ParaView includes built-in documentation that is accessed by clicking on the Help menu item.
Some additional documentation is available on the ParaView Wiki site https://www.paraview.org/Wiki/ParaView.
You may use other visualization software, but some adaption from what is described here will be necessary.

Input Files

The files needed to work through the examples are found in the examples directory under the top-level PyLith directory.
All of the files used in the example problems are extensively documented with comments.

Visualizing PyLith Output

See ParaView Python Scripts for a description of how to make use of the provided Python scripts for visualizing simulation output with ParaView.
Alternatively, you can manually construct the visuzliation pipeline in several open-source visualization tools, such as ParaView and Visit.

Examples

	Axial and Shear Deformation (2D Box)
	Overview

	Example Workflow
	Mesh Description

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Axial and Shear Deformation (3D Box)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Horizontal Cross-Section of Strike-Slip Fault (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 1 with Cubit Mesh

	Step 2: Single Earthquake Rupture and Velocity Boundary Conditions
	Simulation parameters
	Boundary conditions

	Running the simulation

	Visualizing the results

	Step 3: Multiple Earthquake Ruptures and Velocity Boundary Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Variable Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Green’s Functions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Least Squares Fault Slip Inversion
	Plotting the results

	Step 7: Bayesian Fault Slip Inversion
	Inversion using original CATMIP algorithm
	Step 7a: Plotting the results

	Suggested Exercises

	Vertical Cross-Section of a Reverse Fault with Splay (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information

	Step 1: Gravitational Body Forces
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Gravitational Body Forces with Reference Stress
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Gravitational Body Forces with Incompressible Elasticity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Surface Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Slip on Two Faults and Elastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 7: Slip on Two Faults and Maxwell Viscoelastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 8: Slip on Two Faults and Power-law Viscoelastic Materials
	Simulation parameters

	Power-law spatial database

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Vertical Cross-Section of Subduction Zone (2D)
	Overview

	Example Workflow
	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Quasistatic Interseismic Deformation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Quasistatic Earthquake Cycle
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Subduction Zone (3D)
	Overview

	Example Workflow
	Cubit Mesh
	Setup

	Meshing using Journal Scripts

	Visualizing the Mesh

	Common Information

	Step 1: Axial Compression
	Simulation parameters

	Visualizing the results

	Step 2: Earthquake Rupture and Postseismic Relaxation
	Simulation parameters

	Visualizing the results

	Step 3: Interseismic Deformation
	Simulation parameters

	Visualizing the results

	Step 4: Earthquake Cycle with Prescribed Slip
	Simulation parameters

	Visualizing the results

	Suggested Exercises

	2D Magma Reservoir Using Poroelasticity
	Overview

	Example Workflow
	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Magma inflation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Magma inflation with evolution of porosity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

	Troubleshooting (2D)
	Example Workflow
	Error Messages
	Configuration Errors

	Runtime Errors

	Step 1: Gravitational Body Forces

	Step 1: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Slip on Two Faults

	Step 6: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 6
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 7
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 8
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 9
	Error Message

	Troubleshooting Strategy

	Resolution

	Additional Examples
	CUBIT Meshing Examples

	Troubleshooting Examples

	Code Verification Benchmarks

Axial and Shear Deformation (2D Box)

The files are in the directory examples/box-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	*.mesh:

	Finite-element mesh files generated manually using a text editor.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This suite of examples demonstrates some basic concepts of using PyLith to solve the static and quasistatic boundary elasticity equation in a 2D box (Fig. 24) with uniform material properties.
This example incrementally adds complexity through a series of steps:

	Step 1:

	Axial extension with Dirichlet (displacement) boundary conditions.

	Step 2:

	Shear deformation with Dirichlet (displacement) boundary conditions.

	Step 3:

	Shear deformation with Dirichlet (displacement) and Neumann (traction) boundary conditions.

	Step 4:

	Same as Step 2 but with initial conditions equal to the analytical solution.

	Step 5:

	Shear deformation with time-dependent Dirichlet (displacement) and Neumann (traction) boundary conditions.

[image: Diagram of geometry for 2D box.]
Fig. 24 Diagram of geometry for 2D box that extends from -6 km to +6 km in the x direction and from -16 km to 0 km in the y direction.
We refer to the domain boundaries using the names shown in the diagram.

Example Workflow

	Mesh Description

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

Mesh Description

For this small, simple problem we constructed the finite-element mesh manually in a text editor using the MeshIOAscii file format.
Fig. 25 shows our mesh with quadrilateral cells and a discretization size of 4 km from the file quad.mesh; we also provide a mesh with triangular cells in tri.mesh.
The mesh file contains the coordinates of the vertices, the index of the vertices in each cell, the material identifier for each cell, and groups of vertices associated with boundaries.
The cells are defined by its vertices listed in a counterclockwise traversal of the cell boundary; the starting point is arbitrary.
For example, cell 0 is defined by the vertices (0, 5, 6, 1);
we also could have defined the cell using (5, 6, 1, 0), (6, 1, 0, 5), or (1, 0, 5, 6).
We use the groups of vertices to apply boundary conditions.

[image: Uniform resolution finite-element mesh with quadrilateral.]
Fig. 25 Uniform resolution finite-element mesh with quadrilateral cells.
Vertices are numbered sequentially from zero with the labels adjacent to each vertex.
Cells are numbered sequentially from zero with the labels at the center of each cell.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg.
This limits duplicate information in the parameter files for each simulation.

Metadata, Mesh, and Output

The pylithapp.metadata section specifies metadata common to all simulations in the directory.
We control the verbosity of the output written to stdout using journal.info.
We set the parameters for importing the finite-element mesh in pylithapp.mesh_generator.

Physics

All of the simulations in this example suite solve the elasticity equation without inertia,

(169)\[\begin{gather}
\vec{s} = \left(\begin{array}{c} \vec{u} \end{array}\right)^T \\
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0}
\end{gather}\]

The default PyLith settings target solving the quasi-static elasticity equation, so we can use the default TimeDependent problem and solution field with a single displacement subfield of basis order 1.

Listing 21 Default PyLith problem and solution field settings appropriate for quasi-static elasticity. We do not include these in pylithapp.cfg.

[pylithapp]
Default problem and solution field.
problem = pylith.problems.TimeDependent
problem.solution = pylith.problems.SolnDisp

[pylithapp.problem.solution.subfields]
The default basis order for solution subfields is 1 (linear variation within cells).
displacement.basis_order = 1

[pylithapp.problem]
Default output for the solution is over the domain.
solution_observers = [domain]

The default material and bulk rheology also target solving the quasi-static elasticity equation.
The default bulk rheology is isotropic linear elasticity.

Listing 22 Default PyLith material and bulk rheology settings appropriate for quasi-static elasticity. We do not include these in pylithapp.cfg.

[pylithapp.problem]
materials = [elastic]
materials.elastic = pylith.materials.Elasticity

[pylithapp.problem.materials.elastic]
elastic.bulk_rheology = pylith.materials.IsotropicLinearElasticity

In this suite of examples we have a single material, and we must specify a description for the material and the label value.
In this case the label value corresponds to the material-id in the finite-element mesh file.
The physical properties for each material are specified in a spatial database.
The material properties are uniform, so we use a single UniformDB to specify the material properties in pylithapp.cfg.
When we have a spatial variation in the material properties, we specify them in a spatial database file.
With uniform properties we use a basis order of 0 for the auxiliary subfields.

Listing 23 Material settings in pylithapp.cfg.

[pylithapp.problem]
materials = [elastic]

[pylithapp.problem.materials.elastic]
description = Elastic material
label_value = 0

We will use uniform material properties, so we use the UniformDB
spatial database.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Elastic properties
db_auxiliary_field.values = [density, vs, vp]
db_auxiliary_field.data = [2500*kg/m**3, 3.0*km/s, 5.2915026*km/s]

Set the discretization of the material auxiliary fields (properties).
We have uniform material properties, so we can use a basis order of 0.
auxiliary_subfields.density.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

Step 1: Axial Extension

Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.ZeroDB

Simulation parameters

This example corresponds to axial extension in the x direction.
We apply Dirichlet (displacement) boundary conditions for the x displacement on the +x (boundary_xpos) and -x (boundary_xneg) boundaries.
We apply roller Dirichlet boundary conditions on the -y (boundary_yneg) boundary.
Fig. 26 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_axialdisp.cfg.

[image:]
Fig. 26 Boundary conditions for axial extension in the x-direction.
We constrain the x displacement on the +x and -x boundaries and set the y displacement to zero on the -y boundary.

We create an array of 3 DirichletTimeDependent boundary conditions.
For each of these boundary conditions we must specify which degrees of freedom are constrained, the name of the label marking the boundary (name of the group of vertices in the finite-element mesh file), and the values for the Dirichlet boundary condition.

Listing 24 Specifying the boundary conditions for Step 1. We only show the detailed settings for the +x boundary.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xpos]
Set Ux=+2.0*m on the +x boundary.
Degree of freedom (dof) 0 corresponds to x displacement.
constrained_dof = [0]
label = boundary_xpos

The spatial database must contain both components even though we do
not constrain the y component.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Dirichlet BC on +x boundary
db_auxiliary_field.values = [initial_amplitude_x, initial_amplitude_y]
db_auxiliary_field.data = [+2.0*m, 0*m]

Running the simulation

Listing 25 Run Step 1 simulation

$ pylith step01_axialdisp.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshioascii(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshioascii(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-16000, -0)
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Solution.py:44:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:175:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:221:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 1000*m
 Time scale: 3.15576e+09*s
 Pressure scale: 3e+10*m**-1*kg*s**-2
 Density scale: 2.98765e+23*m**-3*kg
 Temperature scale: 1*K
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:186:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_type = lu
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 1.245882095312e-02
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 6.738354969624e-18
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOAscii reader and that it found the domain to extend from -6000 m to +6000 m in the x direction and from -16000 m to 0 m in the y direction.
We also see the scales used to nondimensionalize the problem.
The density scale is very large for quasistatic problems.

Near the end of the output written to the terminal, we see the PETSc options PyLith selected based on the governing equations and formulation as discussed in PETSc Options.
The solver advanced the solution one time step (static simulation).
The linear solve converged in 1 iteration, consistent with the LU preconditioner.
The norm of the residual met the absolute tolerance convergence criterion (ksp_atol).
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 27 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we first start ParaView from the examples/box-2d directory.

Listing 26 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
For Step 1 we do not need to change any of the default values.

[image: Solution for Step 1. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 27 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 2: Shear Displacement

Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

Simulation parameters

This example corresponds to shear deformation due to Dirichlet (displacement) boundary conditions.
We apply Dirichlet (displacement) boundary conditions for the y displacement on the +x (boundary_xpos) and -x (boundary_xneg) boundaries and for the x displacement on the +y (boundary_ypos) and -y (boundary_yneg) boundaries.
Fig. 26 shows the boundary conditions on the domain.
The parameters specific to this example are in step02_sheardisp.cfg.

[image:]
Fig. 28 Boundary conditions for shear deformation.
We constrain the y displacement on the +x and -x boundaries and the x displacement on the +y and -y boundaries.

We create an array of 4 DirichletTimeDependent boundary conditions.
For each of these boundary conditions we must specify which degrees of freedom are constrained, the name of the label marking the boundary (name of the group of vertices in the finite-element mesh file), and the values for the Dirichlet boundary condition.
The displacement field varies along each boundary, so we use a SimpleDB spatial database and the linear query type.

Listing 27 Specifying the boundary conditions for Step 2. We only show the detailed settings for the -x boundary.

[pylithapp.problem]
bc = [bc_xneg, bc_yneg, bc_xpos, bc_ypos]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent

Degree of freedom (dof) 1 corresponds to y displacement.
constrained_dof = [1]
label = boundary_xneg
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x edge
db_auxiliary_field.iohandler.filename = sheardisp_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

Running the simulation

Listing 28 Run Step 2 simulation

$ pylith step02_sheardisp.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshioascii(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshioascii(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-16000, -0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 2.239977678460e-03
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 1.964321818484e-18
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The output written to the terminal is nearly identical to what we saw for Step 1.
We omit the middle portion of the output which shows that the domain, the scales for nondimensionalization, and PETSc options all remain the same.

Visualizing the results

In Fig. 29 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/box-2d directory.

Listing 29 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next, we override the default name of the simulation file with the name of the current simulation.

Listing 30 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_sheardisp"

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 2. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 29 Solution for Step 2.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 3: Shear Displacement and Tractions

Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

Simulation parameters

In Step 3 we replace the Dirichlet (displacement) boundary conditions on the +y and -y boundaries with equivalent Neumann (traction) boundary conditions.
In order to maintain symmetry and prevent rigid body motion, we constrain both the x and y displacements on the +x and -x boundaries.
The solution matches that in Step 2.
Fig. 30 shows the boundary conditions on the domain.
The parameters specific to this example are in step03_sheardisptract.cfg.

[image:]
Fig. 30 Boundary conditions for shear deformation.
We constrain the x and y displacements on the +x and -x boundaries.
We apply tangential (shear) tractions on the +y and -y boundaries.

The tractions are uniform on each of the two boundaries, so we use a UniformDB.
In PyLith the direction of the tangential tractions in 2D is defined by the cross product of the +z direction and the outward normal on the boundary.
On the +y boundary a positive tangential traction is in the -x direction, and on the -y boundary a positive tangential traction is in the +x direction.
We want tractions in the opposite direction as shown by the arrows in Fig. 30, so we apply negative tangential tractions.

Listing 31 Specifying the boundary conditions for Step 3. We only show the detailed settings for the -x and -y boundaries.

[pylithapp.problem]
bc = [bc_xneg, bc_yneg, bc_xpos, bc_ypos]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.NeumannTimeDependent
bc.bc_ypos = pylith.bc.NeumannTimeDependent

[pylithapp.problem.bc.bc_xneg]
Degrees of freedom (dof) 0 and 1 correspond to the x and y displacements.
constrained_dof = [0, 1]
label = boundary_xneg
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x boundary
db_auxiliary_field.iohandler.filename = sheardisp_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.bc.bc_yneg]
label = boundary_yneg
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Neumann BC -y boundary
db_auxiliary_field.values = [initial_amplitude_tangential, initial_amplitude_normal]
db_auxiliary_field.data = [-4.5*MPa, 0*MPa]

Running the simulation

Listing 32 Run Step 3 simulation

$ pylith step03_sheardisptract.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshioascii(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshioascii(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-16000, -0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 6.059797141590e-03
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 2.140441363908e-18
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

As expected, the output written to the terminal is nearly identical to what we saw for Steps 1 and 2.

Visualizing the results

In Fig. 31 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 2 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 33 Set the simulation in the ParaView Python Shell.

>>> SIM = "step03_sheardisptract"

[image: Solution for Step 3. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 31 Solution for Step 3.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
The solution matches the one from Step 2.

Step 4: Shear Displacement and Initial Conditions

Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

Simulation parameters

In this example we demonstrate the use of initial conditions for the boundary value problem in Step 2.
We set the displacement field over the domain to the analytical solution as an initial condition.

The parameters specific to this example are in step04_sheardispic.cfg.
The only difference with respect to Step 2 is the addition of the initial condition.
From our boundary conditions we can see that the analytical solution to our boundary value problem is \(\vec{u}(x,y)=(ay,ax)\).
Because we are specifying the displacement field over the domain, we use the SimpleGridDB, which specifies the values on a logically rectangular grid aligned with the coordinate axes.
The grid layout of the values allows queries for values at points to be much more efficient than a SimpleDB which can have points at arbitrary locations.

Listing 34 Initial conditions for Step 4.

[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.SimpleGridDB
db.description = Initial conditions over domain
db.filename = sheardisp_ic.spatialdb

Running the simulation

Listing 35 Run Step 4 simulation

$ pylith step04_sheardispic.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshioascii(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshioascii(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-16000, -0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 4.968438524050e-19
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 0
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.
WARNING! There are options you set that were not used!
WARNING! could be spelling mistake, etc!
There is one unused database option. It is:
Option left: name:-ksp_converged_reason (no value)

By design we set the initial condition so that it satisfies the elasticity equation.
As a result, the first nonlinear solver residual evaluation meets the convergence criteria.
The linear solver is not used; this is why PETSc reports an unused option at the end of the simulation.

Visualizing the results

In Fig. 32 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 3 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 36 Set the simulation in the ParaView Python Shell.

>>> SIM = "step04_sheardispic"

[image: Solution for Step 4. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 32 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
THe solution matches the one in Step 2.

Step 5: Time-Dependent Shear Displacement and Tractions

Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	backward Euler time stepping

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

Simulation parameters

In this example we build on Step 3 and make the Dirichlet (displacement) and Neumann (traction) boundary conditions a bit more complicated by adding variation in time.
The simulation has a duration of 5 years with a time step of 1 year.
The time-dependent boundary conditions use the same initial amplitude values for the first time step before adding in a constant rate increase at a time of 1 year.
Fig. 33 shows the boundary conditions on the domain.
The parameters specific to this example are in step05_sheardisptractrate.cfg.

[image:]
Fig. 33 Boundary conditions for shear deformation.
We constrain the x and y displacements on the +x and -x boundaries.
We apply tangential (shear) tractions on the +y and -y boundaries.
At a time of 1 year we increase the amplitude at a constrant rate \(b\) (\(H(t)\) corresponds to the heavyside step function).

This is a time-dependent problem, so we must specify the start and end times of the simulation along with the initial time step.
With an initial time step of 1 year, we start the simulation at -1 year so that the first solve will advance the simulation to a time of 0.
We also specify a relaxation time on the order of the time scale of the simulation to allow for reasonable nondimensionalization of time.

Listing 37 Time stepping parameters for Step 5.

[pylithapp.problem]
start_time = -1.0*year
end_time = 5.0*year
initial_dt = 1.0*year

[pylithapp.problem.normalizer]
relaxation_time = 10.0*year

For the time-dependent Dirichlet and Neumann boundary conditions, we specify both the initial displacement and a constant rate; the constant rate begins at t=1 year.

Listing 38 Time-dependent boundary conditions for Step 5. We show the details for the -x and -y boundaries.

[pylithapp.problem.bc.bc_xneg]
Degrees of freedom (dof) 0 and 1 correspond to the x and y displacements.
constrained_dof = [0, 1]
label = boundary_xneg
use_initial = True
use_rate = True
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x boundary
db_auxiliary_field.iohandler.filename = sheardisprate_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.bc.bc_yneg]
label = boundary_yneg
use_initial = True
use_rate = True
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Neumann BC -y boundary
db_auxiliary_field.values = [initial_amplitude_tangential, initial_amplitude_normal, rate_start_time, rate_amplitude_tangential, rate_amplitude_normal]
db_auxiliary_field.data = [-4.5*MPa, 0.0*MPa, 1.0*year, -1.125*MPa/year, 0.0]

Running the simulation

Listing 39 Run Step 5 simulation

$ pylith step05_sheardisptractrate.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshioascii(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshioascii(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-16000, -0)

-- many lines omitted --

5 TS dt 0.1 time 0.4
 0 SNES Function norm 1.467261021331e-03
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 7.893110957891e-19
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
6 TS dt 0.1 time 0.5
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The output written to the terminal now contains multiple time steps.
The PETSc TS (time stepping) monitor shows the time step number followed by the time step and time in nondimensional units.

Visualizing the results

In Fig. 31 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 2 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 40 Set the simulation in the ParaView Python Shell.

>>> SIM = "step05_sheardisptractrate"

One you run the viz/plot_dispwarp.py Python script, you can click on the “play” button corresponding to the right triangle in the toolbar to view the time-dependent deformation.

[image: Solution for Step 5. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 34 Solution for Step 5 at a time of 4.0 years.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Suggested Exercises

	Adjust the material properties in Step 1 and verify the effect on the deformation and stress field.

	Use the tri.mesh file in any of the steps. Can you change the mesh file using one additional command line argument?

	Change the boundary conditions in Steps 2-5 to generate a different shear strain.

	Set the basis order and quadrature order to 2. Do you get the same solution? Why?

Axial and Shear Deformation (3D Box)

This example is the 3D version of the 2D box axial shear and deformation example (examples/box-2d).
The files are in the directory examples/box-3d and include:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	generate_gmsh.py:

	Python script to generate the finite-element mesh using Gmsh.

	*.msh:

	Gmsh finite-element mesh files generated by Gmsh.

	*.jou:

	Files used to construct the finite-element mesh using Cubit.

	*.exo:

	Exodus II finite-element mesh files generated by Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This suite of examples demonstrates some basic concepts of using PyLith to solve the static and quasistatic boundary elasticity equation in a 3D box (Fig. 35) with uniform material properties.
The examples incrementally add complexity through a series of steps:

	Step 1:

	Axial extension with Dirichlet (displacement) boundary conditions.

	Step 2:

	Shear deformation with Dirichlet (displacement) boundary conditions.

	Step 3:

	Shear deformation with Dirichlet (displacement) and Neumann (traction) boundary conditions.

	Step 4:

	Same as Step 2 but with initial conditions equal to the analytical solution.

	Step 5:

	Shear deformation with time-dependent Dirichlet (displacement) and Neumann (traction) boundary conditions.

[image: Diagram of geometry for 3D box.]
Fig. 35 Diagram of geometry for 3D box that extends from -6 km to +6 km in the x and y directions and from -9 km to 0 km in the z direction.
We refer to the domain boundaries using the names shown in the diagram.

Example Workflow

	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Axial Extension
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Shear Displacement
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Shear Displacement and Initial Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Time-Dependent Shear Displacement and Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

Gmsh Mesh

Geometry

We create the geometry directly from the box primitive provided by the OpenCascade geometry engine in Gmsh.

Meshing using Python Script

We use the Python script generate_gmsh.py to create the geometry and generate the mesh.
The script makes use of the gmsh_utils.GenerateMesh class (discussed in gmsh_utils), which provides the command line arguments and boilerplate methods.
In our generate_gmsh.py Python script, we create a class App that implements the functionality missing in gmsh_utils.GenerateMesh.
We must implement the create_geometry(), mark(), and generate_mesh() methods that are abstract in the GenerateMesh base class.
We use the Gmsh MeshSize options to define a uniform discretization size of 3 km.

Listing 41 Run the generate_gmsh.py Python script to generate the mesh.

Generate a mesh with hexahedral cells and save it to `mesh_hex.msh` (default filename).
$./generate_gmsh.py --write

Save as above but start the Gmsh graphical interface after saving the mesh.
$./generate_gmsh.py --write --gui

Create only the geometry and start the Gmsh graphical interface.
$./generate_gmsh.py --geometry --gui

Show available command line arguments.
$./generate_gmsh.py --help

By default the Python script will generate a finite-element mesh with hexahedral cells and save it to the file mesh_hex.msh.
You can view the mesh using Gmsh either by using the --gui command line argument when you generate the mesh or running Gmsh from the command line and opening the file.

Listing 42 View the Gmsh mesh file mesh_hex.msh using Gmsh.

gmsh -open mesh_hex.msh

[image: Finite-element mesh with hexahedral cells generated by Gmsh.]

Fig. 36 Finite-element mesh with hexahedral cells generated by Gmsh.

Cubit Mesh

Geometry

We can create the geometry directly from the brick primitive in Cubit.

Meshing using Journal Scripts

We use Cubit journal files mesh_tet.jou and mesh_hex.jou to generate tetrahedral and hexahedral meshes, respectively.
Both of these journal files make use of the geometry.jou, and bc.jou files for creating the geometry and tagging boundary conditions and materials.
We use the Cubit graphical user interface to play the Journal files.

Important

We use IDless journaling in CUBIT.
This allows us to reference objects in a manner that should be independent of the version of CUBIT that is being used.
In the journal files, the original command used is typically commented out, and the following command is the equivalent IDless command.

Once you have run either the mesh_tet.jou or mesh_hex.jou journal file to construct the geometry and generate the mesh, you will have a corresponding Exodus-II file (mesh_tet.exo or mesh_hex.exo).
These are NetCDF files, and they can be loaded into ParaView.
This can be done by either running ParaView and loading the file, or using the script provided in the viz directory.
For example, if ParaView is in your path, you can run the following command:

Listing 43 Start paraview and run the viz/plot_mesh.py Python script to view the mesh with hexahedral cells.

paraview --script=viz/plot_mesh.py

[image: Finite-element mesh with hexahedral cells generated by Cubit.]

Fig. 37 Finite-element mesh with hexahedral cells generated by Cubit.

To load the mesh with tetrahedral cells, open the Python Shell in ParaView and set the EXODUS_FILE variable, and then run the viz/plot_mesh.py Python script.
See ParaView Python Scripts for more information about running ParaView Python scripts.

Listing 44 Load a different Exodus file generated by Cubit by setting the EXODUS_FILE variable in the ParaView Python Shell.

EXODUS_FILE = "mesh_tet.exo"

[image: Finite-element mesh with tetrahedral cells generated by Cubit.]

Fig. 38 Finite-element mesh with tetrahedral cells generated by Cubit.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg.
This limits duplicate information in the parameter files for each simulation.

Metadata, Mesh, and Output

The pylithapp.metadata section specifies metadata common to all simulations in the directory.
We control the verbosity of the output written to stdout using journal.info.
We use MeshIOPetsc to import finite-element mesh from Gmsh.

Listing 45 Parameters for importing the finite-element mesh from Gmsh.

[pylithapp.mesh_generator]
reader = pylith.meshio.MeshIOPetsc

Set the filename and the dimension of the default Cartesian coordinate system.
reader.filename = mesh_hex.msh
reader.coordsys.space_dim = 3

In addition to output of the solution over the domain (default), we also output the solution on the ground surface (+z boundary).

Listing 46 Parameters for output over the domain and ground surface (+z boundary).

[pylithapp.problem]
solution_observers = [domain, ground_surface]
solution_observers.ground_surface = pylith.meshio.OutputSolnBoundary

[pylithapp.problem.solution_observers.ground_surface]
The `label` and `label_value` match the name and tag in the Gmsh Python script.
label = boundary_zpos
label_value = 15

Physics

All of the simulations in this example suite solve the elasticity equation without inertia,

(170)\[\begin{gather}
\vec{s} = \left(\begin{array}{c} \vec{u} \end{array}\right)^T \\
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0}
\end{gather}\]

The default PyLith settings target solving the quasi-static elasticity equation, so we can use the default TimeDependent problem and solution field with a single displacement subfield of basis order 1.

In this suite of examples we have a single material, and we must specify a description for the material and the label value.
In this case the label value corresponds to the tag of the physical group in the Gmsh file.
The material properties are uniform, so we use a single UniformDB to specify the material properties in pylithapp.cfg.
When we have a spatial variation in the material properties, we specify them in a spatial database file.
With uniform properties we use a basis order of 0 for the auxiliary subfields.

Listing 47 Material settings in pylithapp.cfg.

[pylithapp.problem]
materials = [elastic]

[pylithapp.problem.materials.elastic]
description = Elastic material
label_value = 0

We will use uniform material properties, so we use the UniformDB
spatial database.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Elastic properties
db_auxiliary_field.values = [density, vs, vp]
db_auxiliary_field.data = [2500*kg/m**3, 3.0*km/s, 5.2915026*km/s]

Set the discretization of the material auxiliary fields (properties).
We have uniform material properties, so we can use a basis order of 0.
auxiliary_subfields.density.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

Step 1: Axial Extension

Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.ZeroDB

Simulation parameters

This example corresponds to axial extension in the x direction and axial compression in the y direction.
We apply Dirichlet (displacement) boundary conditions for the x displacement on the +x (boundary_xpos) and -x (boundary_xneg) boundaries and for the y displacement on the +y (boundary_ypos) and -y (boundary_yneg) boundaries.
We apply roller Dirichlet boundary conditions on the -z (boundary_zneg) boundary.
Fig. 39 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_axialdisp.cfg.

[image:]
Fig. 39 Boundary conditions for axial extension in the x direction and axial compression in the y direction.
We constrain the x displacement on the +x and -x boundaries, the y displacement on the +y and -y boundaries, and set the z displacement to zero on the -z boundary.

We create an array of 5 DirichletTimeDependent boundary conditions.
For each of these boundary conditions we must specify which degrees of freedom are constrained, the name of the label marking the boundary (name of the group of vertices in the finite-element mesh file), and the values for the Dirichlet boundary condition.

Listing 48 Specifying the boundary conditions for Step 1. We only show the detailed settings for the +x boundary.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_zneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent
bc.bc_zneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xpos]
label = boundary_xpos
label_value = 11
constrained_dof = [0]

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Dirichlet BC on +x boundary
db_auxiliary_field.values = [initial_amplitude_x, initial_amplitude_y, initial_amplitude_z]
db_auxiliary_field.data = [+2.0*m, 0*m, 0*m]

Running the simulation

Listing 49 Run Step 1 simulation

$ pylith step01_axialdisp.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-6000, 6000)
 (-9000, 0)
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Solution.py:44:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:175:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:221:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 1000*m
 Time scale: 3.15576e+09*s
 Pressure scale: 3e+10*m**-1*kg*s**-2
 Density scale: 2.98765e+23*m**-3*kg
 Temperature scale: 1*K
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:186:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_type = lu
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 6.816802711276e-02
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 3.270841134292e-17
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOAscii reader and that it found the domain to extend from -6000 m to +6000 m in the x and y directions and from -9000 m to 0 m in the z direction.
We also see the scales used to nondimensionalize the problem.
The density scale is very large for quasistatic problems.

Near the end of the output written to the terminal, we see the PETSc options PyLith selected based on the governing equations and formulation as discussed in PETSc Options.
The solver advanced the solution one time step (static simulation).
The linear solve converged in 1 iteration, consistent with the LU preconditioner.
The norm of the residual met the absolute tolerance convergence criterion (ksp_atol).
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 40 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we first start ParaView from the examples/box-2d directory.

Listing 50 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
For Step 1 we do not need to change any of the default values.

[image: Solution for Step 1. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 40 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 2: Shear Displacement

Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

Simulation parameters

This example corresponds to shear deformation due to Dirichlet (displacement) boundary conditions.
We apply Dirichlet (displacement) boundary conditions for the y displacement on the +x (boundary_xpos) and -x (boundary_xneg) boundaries and for the x displacement on the +y (boundary_ypos) and -y (boundary_yneg) boundaries.
Fig. 39 shows the boundary conditions on the domain.
The parameters specific to this example are in step02_sheardisp.cfg.

[image:]
Fig. 41 Boundary conditions for shear deformation.
We constrain the y displacement on the +x and -x boundaries and the x displacement on the +y and -y boundaries.

We create an array of 5 Dirichlet boundary conditions.
On the -x, +x, -y, and +y boundaries we impose shear displacement.

Listing 51 Boundary conditions for Step 2. We only show the details for the -x boundary.

bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_zneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent
bc.bc_zneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xneg]
label = boundary_xneg
label_value = 10
constrained_dof = [1]

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x boundary
db_auxiliary_field.iohandler.filename = sheardisp_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

Running the simulation

Listing 52 Run Step 2 simulation

$ pylith step02_sheardisp.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-6000, 6000)
 (-9000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 1.811215061775e-02
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 2.330640615892e-17
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The output written to the terminal is nearly identical to what we saw for Step 1.

Visualizing the results

In Fig. 42 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/box-2d directory.

Listing 53 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next, we override the default name of the simulation file with the name of the current simulation.

Listing 54 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_sheardisp"

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 2. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 42 Solution for Step 2.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 3: Shear Displacement and Tractions

Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

Simulation parameters

In Step 3 we replace the Dirichlet (displacement) boundary conditions on the +y and -y boundaries with equivalent Neumann (traction) boundary conditions.
In order to maintain symmetry and prevent rigid body motion, we constrain both the x and y displacements on the +x and -x boundaries.
The solution matches that in Step 2.
Fig. 43 shows the boundary conditions on the domain.
The parameters specific to this example are in step03_sheardisptract.cfg.

[image:]
Fig. 43 Boundary conditions for shear deformation.
We constrain the x and y displacements on the +x and -x boundaries.
We apply tangential (shear) tractions on the +y and -y boundaries.

The tractions are uniform on each of the two boundaries, so we use a UniformDB.
In PyLith the direction of the horizontal tangential tractions in 3D are defined by the cross product of the +z direction and the outward normal on the boundary.
On the +y boundary a positive tangential traction is in the -x direction, and on the -y boundary a positive tangential traction is in the +x direction.
We want tractions in the opposite direction as shown by the arrows in Fig. 30, so we apply negative tangential tractions.

Listing 55 Specifying the boundary conditions for Step 3. We only show the detailed settings for the -x and -y boundaries.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_zneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.NeumannTimeDependent
bc.bc_ypos = pylith.bc.NeumannTimeDependent
bc.bc_zneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xneg]
label = boundary_xneg
label_value = 10
constrained_dof = [0, 1]

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x edge
db_auxiliary_field.iohandler.filename = sheardisp_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.bc.bc_yneg]
label = boundary_yneg
label_value = 12

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Neumann BC -y edge
db_auxiliary_field.values = [initial_amplitude_tangential_1, initial_amplitude_tangential_2, initial_amplitude_normal]
db_auxiliary_field.data = [-9.0*MPa, 0*MPa, 0*MPa]

Running the simulation

Listing 56 Run Step 3 simulation

$ pylith step03_sheardisptract.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-6000, 6000)
 (-9000, 0)

-- many lines omitted --

 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 2.854246293576e-02
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 2.511862662012e-17
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The output written to the terminal is nearly identical to what we saw for Step 2.
The linear solve did require only 7 iteration to converge.

Visualizing the results

In Fig. 44 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 2 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 57 Set the simulation in the ParaView Python Shell.

>>> SIM = "step03_sheardisptract"

[image: Solution for Step 3. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 44 Solution for Step 3.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
The solution matches the one from Step 2.

Step 4: Shear Displacement and Initial Conditions

Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.ZeroDB

Simulation parameters

In this example we demonstrate the use of initial conditions for the boundary value problem in Step 2.
We set the displacement field over the domain to the analytical solutin as an initial condition.

The parameters specific to this example are in step04_sheardispic.cfg.
The only difference with respect to Step 2 is the addition of the initial condition.
From our boundary conditions we can see that the analytical solution to our boundary value problem is \(\vec{u}(x,y,z)=(ay,ax,0)\).
Because we are specifying the displacement field over the domain, we use the SimpleGridDB, which specifies the values on a logically rectangular grid aligned with the coordinate axes.
The grid layout of the values allows queries for values at points to be much more efficient than a SimpleDB which can have points at arbitrary locations.

Listing 58 Initial conditions for Step 4.

[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.SimpleGridDB
db.description = Initial conditions over domain
db.filename = sheardisp_ic.spatialdb
db.query_type = linear

Running the simulation

Listing 59 Run Step 4 simulation

$ pylith step04_sheardispic.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-6000, 6000)
 (-9000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 1.164184944610e-17
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 0
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.
WARNING! There are options you set that were not used!
WARNING! could be spelling mistake, etc!
There is one unused database option. It is:
Option left: name:-ksp_converged_reason (no value)

By design we set the initial condition so that it satisfies the elasticity equation.
As a result, the first nonlinear solver residual evaluation meets the convergence criteria.
The linear solver is not used; this is why PETSc reports an unused option at the end of the simulation.

Visualizing the results

In Fig. 45 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 3 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 60 Set the simulation in the ParaView Python Shell.

>>> SIM = "step04_sheardispic"

[image: Solution for Step 4. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 45 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
THe solution matches the one in Step 2.

Step 5: Time-Dependent Shear Displacement and Tractions

Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	backward Euler time stepping

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

Simulation parameters

In this example we build on Step 3 and make the Dirichlet (displacement) and Neumann (traction) boundary conditions a bit more complicated by adding variation in time.
The simulation has a duration of 5 years with a time step of 1 year.
The time-dependent boundary conditions use the same initial amplitude values for the first time step before adding in a constant rate increase at a time of 1 year.
Fig. 46 shows the boundary conditions on the domain.
The parameters specific to this example are in step05_sheardisptractrate.cfg.

[image:]
Fig. 46 Boundary conditions for shear deformation.
We constrain the x and y displacements on the +x and -x boundaries.
We apply tangential (shear) tractions on the +y and -y boundaries.
At a time of 1 year we increase the amplitude at a constrant rate \(b\) (\(H(t)\) corresponds to the heavyside step function).

This is a time-dependent problem, so we must specify the start and end times of the simulation along with the initial time step.
With an initial time step of 1 year, we start the simulation at -1 year so that the first solve will advance the simulation to a time of 0.
We also specify a relaxation time on the order of the time scale of the simulation to allow for reasonable nondimensionalization of time.

Listing 61 Time stepping parameters for Step 5.

[pylithapp.problem]
initial_dt = 1.0*year
start_time = -1.0*year
end_time = 5.0*year

[pylithapp.problem.normalizer]
relaxation_time = 10.0*year

For the time-dependent Dirichlet and Neumann boundary conditions, we specify both the initial displacement and a constant rate; the constant rate begins at t=1 year.

Listing 62 Time-dependent boundary conditions for Step 5. We show the details for the -x and -y boundaries.

bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_zneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.NeumannTimeDependent
bc.bc_ypos = pylith.bc.NeumannTimeDependent
bc.bc_zneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xneg]
label = boundary_xneg
label_value = 10
constrained_dof = [0, 1]
use_initial = True
use_rate = True

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC -x edge
db_auxiliary_field.iohandler.filename = sheardisprate_bc_xneg.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.bc.bc_yneg]
label = boundary_yneg
label_value = 12
use_initial = True
use_rate = True

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Neumann BC +x edge
db_auxiliary_field.values = [initial_amplitude_tangential_1, initial_amplitude_tangential_2, initial_amplitude_normal, rate_start_time, rate_amplitude_tangential_1, rate_amplitude_tangential_2, rate_amplitude_normal]
db_auxiliary_field.data = [-9.0*MPa, 0.0*MPa, 0.0*MPa, 1.0*year, -2.25*MPa/year, 0.0*MPa/year, 0.0*MPa/year]

Running the simulation

Listing 63 Run Step 5 simulation

$ pylith step05_sheardisptractrate.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-6000, 6000)
 (-6000, 6000)
 (-9000, 0)

-- many lines omitted --

5 TS dt 0.1 time 0.4
 0 SNES Function norm 7.135615733940e-03
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 1.130764208982e-17
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
6 TS dt 0.1 time 0.5
 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The output written to the terminal now contains multiple time steps.
The PETSc TS (time stepping) monitor shows the time step and time in nondimensional units.

Visualizing the results

In Fig. 44 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 2 we override the default name of the simulation file with the name of the current simulation before running the viz/plot_dispwarp.py Python script.

Listing 64 Set the simulation in the ParaView Python Shell.

>>> SIM = "step05_sheardisptractrate"

One you run the viz/plot_dispwarp.py Python script, you can click on the “play” button corresponding to the right triangle in the toolbar to view the time-dependent deformation.

[image: Solution for Step 5. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 47 Solution for Step 5 at a time of 4.0 years.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Suggested Exercises

	Adjust the material properties in Step 1 and verify the effect on the deformation and stress field.

	Use the tet.gmsh file in any of the steps. Can you change the mesh file using one additional command line argument?

	Use the Exodus files from Cubit rather than the files from Gmsh.

	Change the boundary conditions in Steps 2-5 to generate a different shear strain.

	Set the basis order and quadrature order to 2. Do you get the same solution? Why?

	In Step 4 change the initial conditions so that only one of the components is equal to the solution?

	In Step 5 adjust the rate or time when the rate dependence starts.

Horizontal Cross-Section of Strike-Slip Fault (2D)

The files are in the directory examples/strikeslip-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	generate_gmsh.py:

	Python script to generate the finite-element mesh using Gmsh.

	*.msh:

	Gmsh finite-element mesh files generated by Gmsh.

	*.jou:

	Files used to construct the finite-element mesh using Cubit.

	*.exo:

	Exodus II finite-element mesh files generated by Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This suite of examples demonstrates some basic concepts of using PyLith to solve the static and quasistatic boundary elasticity equation for a horizontal cross-section of a strike-slip fault (Fig. 48) with nonuniform material properties.
The fault extends the entire length of the domain.
The shear modulus is larger on the +x side of the fault.
This example builds on the previous examples and adds complexity through a series of steps:

	Step 1:

	Static coseismic slip with Dirichlet (displacement) boundary conditions.

	Step 2:

	Quasistatic coseismic slip with time-dependent Dirichlet (displacement) boundary conditions.

	Step 3:

	Quasistatic slip with two ruptures and time-dependent Dirichlet (displacement) boundary conditions.

	Step 4:

	Variable slip and Dirichlet (displacement) boundary conditions.

	Step 5:

	Static Green’s functions with Dirichlet (displacement) boundary conditions.

	Step 6:

	Invert for slip in Step 4 using Green’s functions from Step 5 and least squares.

	Step 7:

	Invert for slip in Step 4 using Green’s functions from Step 5 and the CATMIP Bayesian framework.

[image: Diagram of geometry for strike-slip fault.]
Fig. 48 Diagram of geometry for domain with a strike-slip fault.
The domain extends from -50 km to +50 km in the x direction and from -75 km to +75 km in the y direction.
We refer to the domain boundaries using the names shown in the diagram.

Important

We decribe how to generate the finite-element mesh using both Gmsh and Cubit.
The files for both methods are included.
For Step 1 we provide PyLith parameter files for both meshes; for Steps 2 and 3 we only provide the Parameter files that use the Gmsh file.

Example Workflow

	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 1 with Cubit Mesh

	Step 2: Single Earthquake Rupture and Velocity Boundary Conditions
	Simulation parameters
	Boundary conditions

	Running the simulation

	Visualizing the results

	Step 3: Multiple Earthquake Ruptures and Velocity Boundary Conditions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Variable Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Green’s Functions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Least Squares Fault Slip Inversion
	Plotting the results

	Step 7: Bayesian Fault Slip Inversion
	Inversion using original CATMIP algorithm
	Step 7a: Plotting the results

	Suggested Exercises

Gmsh Mesh

Geometry

We construct the geometry by first creating points, then connecting the points into curves, and finally the curves into surfaces.
Fig. 49 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Gmsh for generating the mesh.]
Fig. 49 Geometry created in Gmsh for generating the finite-element mesh.
We construct curves from points (p1, …, p6) and surfaces from the curves (for example, c_yneg1).
The arrows indicate the direction (orientation) of the curves.

Important

Each curve in Gmsh has a direction (orientation).
The direction is from the starting point to the ending point.
When connecting curves into surfaces, you must connect the curves in a consistent direction.
We connect the curves in a counter-clockwise direction.
To reverse the direction of a curve, use the negative tag.

Meshing using Python Script

We use the Python script generate_gmsh.py to create the geometry and generate the mesh.
The script makes use of the gmsh_utils.GenerateMesh class (discussed in gmsh_utils), which provides the command line arguments and boilerplate methods.
In our generate_gmsh.py Python script, we create a class App that implements the functionality missing in gmsh_utils.GenerateMesh.
We must implement the create_geometry(), mark(), and generate_mesh() methods that are abstract in the GenerateMesh base class.

We use the Gmsh MeshSize options to define a discretization size that grows slowly at a geometric rate with distance from the fault.
See 6.3.1 Specifying mesh element sizes in the Gmsh documentation [https://gmsh.info/doc/texinfo/gmsh.html#Specifying-mesh-element-sizes] for more information.

Listing 65 Run the generate_gmsh.py Python script to generate the mesh.

Generate a mesh with triangular cells and save it to `mesh_tri.msh` (default filename).
$./generate_gmsh.py --write

Save as above but start the Gmsh graphical interface after saving the mesh.
$./generate_gmsh.py --write --gui

Create only the geometry and start the Gmsh graphical interface.
$./generate_gmsh.py --geometry --gui

Show available command line arguments.
$./generate_gmsh.py --help

By default the Python script will generate a finite-element mesh with triangular cells and save it to the file mesh_tri.msh.
You can view the mesh using Gmsh either by using the --gui command line argument when you generate the mesh or running Gmsh from the command line and opening the file.

Listing 66 View the Gmsh mesh file mesh_tri.msh using Gmsh.

gmsh -open mesh_tri.msh

[image: Finite-element mesh with triangular cells generated by Gmsh.]

Fig. 50 Finite-element mesh with triangular cells generated by Gmsh.

Cubit Mesh

Geometry

We construct the geometry by taking a horizontal cross-section of a 3D block.
Alternatively, we could have constructed the geometry by building it up from points and curves like we did with Gmsh.
Fig. 51 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Cubit for generating the mesh.]
Fig. 51 Geometry created in Cubit for generating the finite-element mesh.
The names of the verties and curves match the ones we use in the Cubit journal files.

Meshing using Journal Scripts

We use Cubit journal files mesh_tri.jou and mesh_quad.jou to generate triangular and quadrilateral meshes, respectively.
Both of these journal files make use of the geometry.jou, gradient.jou, and createbc.jou files for creating the geometry, setting the discretization size, and tagging boundary conditions, faults, and materials, respectively.
We use the Cubit graphical user interface to play the Journal files.

Important

We use IDless journaling in CUBIT.
This allows us to reference objects in a manner that should be independent of the version of CUBIT that is being used.
In the journal files, the original command used is typically commented out, and the following command is the equivalent IDless command.

Note

Examine how we set the discretization size in Gmsh and Cubit.
In both cases the discretization size increases at a geometric rate with distance from the fault.
For this simple geometry, it required less than 10 lines of Python code in Gmsh and about the same number of lines in Cubit.
In Gmsh the code is very general and remains the same even as the domain geometry becomes more complex, whereas in Cubit the number of commands increases with the complexity of the geometry.

Once you have run either the mesh_tri.jou or mesh_quad.jou journal file to construct the geometry and generate the mesh, you will have a corresponding Exodus-II file (mesh_tri.exo or mesh_quad.exo).
These are NetCDF files, and they can be loaded into ParaView.
This can be done by either running ParaView and loading the file, or using the script provided in the viz directory.
For example, if ParaView is in your path, you can run the
following command:

Listing 67 Start paraview and run the viz/plot_mesh.py Python script to view the mesh with triangular cells.

paraview --script=viz/plot_mesh.py

[image: Finite-element mesh with triangular cells generated by Cubit.]

Fig. 52 Finite-element mesh with triangular cells generated by Cubit.

To load the mesh with quadrilateral cells, open the Python Shell in ParaView and set the EXODUS_FILE variable, and then run the viz/plot_mesh.py Python script.
See ParaView Python Scripts for more information about running ParaView Python scripts.

Listing 68 Load a different Exodus file generated by Cubit by setting the EXODUS_FILE variable in the ParaView Python Shell.

EXODUS_FILE = "mesh_quad.exo"

[image: Finite-element mesh with quadrilateral cells generated by Cubit.]

Fig. 53 Finite-element mesh with quadrilateral cells generated by Cubit.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg, which contains numerous comments, so we only summarize the parameters here.

Metadata, Mesh, and Output

The pylithapp.metadata section specifies metadata common to all simulations in the directory.
We control the verbosity of the output written to stdout using journal.info.
We set the parameters for importing the finite-element mesh in pylithapp.mesh_generator.

Physics

These quasi-static simulations solve the elasticity equation and include a fault, so we have a solution field with both displacement and Lagrange multiplier subfields.

(171)\[\begin{gather}
\vec{s} = \left(\begin{array}{c} \vec{u} \quad \vec{\lambda} \end{array}\right)^T \\
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0}
\end{gather}\]

We use the default TimeDependent problem and solution field with a single displacement subfield of basis order 1.
In addition to output of the solution over the domain, we output the solution over the -y and +y boundaries.

Listing 69 Parameters for the solution and output of the solution on the -y and +y boundaries.

[pylithapp.problem]
solution = pylith.problems.SolnDispLagrange

[pylithapp.problem]
solution_observers = [domain, top_boundary, bot_boundary]
solution_observers.top_boundary = pylith.meshio.OutputSolnBoundary
solution_observers.bot_boundary = pylith.meshio.OutputSolnBoundary

[pylithapp.problem.solution_observers.top_boundary]
label = boundary_ypos
label_value = 13

[pylithapp.problem.solution_observers.bot_boundary]
label = boundary_yneg
label_value = 12

We use the same material properties in all of the simulations in this directory, so we specify them in pylithapp.cfg to avoid repeating the information in the file with parameters for each simulation.
We have two materials with a contrast in the shear modulus across the fault.

Listing 70 Material parameters common to all simulations in this directory.

[pylithapp.problem]
materials = [elastic_xneg, elastic_xpos]

[pylithapp.problem.materials.elastic_xneg]
description = Material to on the -x side of the fault
label_value = 1

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Elastic properties xneg
db_auxiliary_field.values = [density, vs, vp]
db_auxiliary_field.data = [2500.0*kg/m**3, 3.00*km/s, 5.29*km/s]

auxiliary_subfields.density.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

derived_subfields.cauchy_strain.basis_order = 0
derived_subfields.cauchy_stress.basis_order = 0

[pylithapp.problem.materials.elastic_xpos]
description = Material to on the +x side of the fault
label_value = 2

db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Elastic properties xpos
db_auxiliary_field.values = [density, vs, vp]
db_auxiliary_field.data = [2500.0*kg/m**3, 4.24*km/s, 5.29*km/s]

auxiliary_subfields.density.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

derived_subfields.cauchy_strain.basis_order = 0
derived_subfields.cauchy_stress.basis_order = 0

Similarly, we set the general fault parameters common to all simulations in the directory.

Listing 71 General fault parameters common to all simulations in this directory.

[pylithapp.problem]
interfaces = [fault]

[pylithapp.problem.interfaces.fault]
label = fault
label_value = 20

Output `slip` on the fault.
observers.observer.data_fields = [slip]

All simulations in this directory use Dirichlet boundary conditions on the -x and +x boundaries with zero displacements,

(172)\[\begin{gather}
u_x(-50km,y) = 0,\\
u_y(-50km,y) = 0,\\
u_x(+50km,y) = 0,\\
u_y(+50km,y) = 0.
\end{gather}\]

Listing 72 Dirichlet boundary conditions common to all simulations in this directory.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xpos]
label = boundary_xpos
label_value = 11
constrained_dof = [0, 1]
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC +x boundary

[pylithapp.problem.bc.bc_xneg]
label = boundary_xneg
label_value = 10
constrained_dof = [0, 1]
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC -x boundary

Step 1: Static Coseismic Slip

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

Simulation parameters

This example involves a static simulation that solves for the deformation from prescribed coseismic slip on the fault.
Fig. 54 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_slip.cfg.

[image:]
Fig. 54 Boundary conditions for static coseismic slip.
We set the x and y displacement to zero on the +x and -x boundaries and prescribe 2 meters of right-lateral slip.

Listing 73 Prescribed slip parameters for Step 1.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

Running the simulation

Listing 74 Run Step 1 simulation

$ pylith step01_slip.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/faults/FaultCohesiveKin.py:93:preinitialize
 -- faultcohesivekin(info)
 -- Pre-initializing fault 'fault'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Solution.py:44:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/materials/RheologyElasticity.py:41:preinitialize
 -- isotropiclinearelasticity(info)
 -- Performing minimal initialization of elasticity rheology 'bulk_rheology'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/materials/RheologyElasticity.py:41:preinitialize
 -- isotropiclinearelasticity(info)
 -- Performing minimal initialization of elasticity rheology 'bulk_rheology'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/bc/DirichletTimeDependent.py:92:preinitialize
 -- dirichlettimedependent(info)
 -- Performing minimal initialization of time-dependent Dirichlet boundary condition 'bc_xneg'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/bc/DirichletTimeDependent.py:92:preinitialize
 -- dirichlettimedependent(info)
 -- Performing minimal initialization of time-dependent Dirichlet boundary condition 'bc_xpos'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/faults/FaultCohesiveKin.py:93:preinitialize
 -- faultcohesivekin(info)
 -- Pre-initializing fault 'fault'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:175:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:221:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 1000*m
 Time scale: 3.15576e+09*s
 Pressure scale: 3e+10*m**-1*kg*s**-2
 Density scale: 2.98765e+23*m**-3*kg
 Temperature scale: 1*K
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:186:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_pc_type = lu
fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_pc_type = lu
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0
pc_fieldsplit_type = schur
pc_type = fieldsplit
pc_use_amat = true
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 4.895713226482e-02
 Linear solve converged due to CONVERGED_ATOL iterations 35
 1 SNES Function norm 2.540698951426e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOPetsc reader and that it found the domain to extend from -50,000 m to +50,000 m in the x direction and from -75,000 m to +75,000 m in the y direction.
The scales for nondimensionalization remain the default values for a quasistatic problem.
PyLith detects the presence of a fault based on the Lagrange multiplier for the fault in the solution field and selects appropriate preconditioning options as discussed in PETSc Options.

At the end of the output written to the terminal, we see that the solver advanced the solution one time step (static simulation).
The linear solve converged after 35 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 55 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/strikeslip-2d directory.

Listing 75 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
For Step 1 we do not need to change any of the default values.

[image: Solution for Step 1. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 55 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the y displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
The contrast in material properties across the faults causes the asymmetry in the y displacement field.

Step 1 with Cubit Mesh

Using the Cubit mesh rather than the Gmsh mesh involves two changes:

	Use the MeshIOCubit reader instead of the MeshIOPetsc reader and change the filename of the mesh file.

	Set the label_value to 1 for boundary conditions and faults.

We must override the nondefault label_value settings in pylithapp.cfg that were appropriate for our Gmsh reader but are incorrect for the Cubit reader.

The file step01_slip_cubit.cfg provides these changes and updates the names for output.

Listing 76 Run Step 1 simulation with the Cubit mesh

$ pylith step01_slip_cubit.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::ExodusII &, pylith::scalar_array *, int *, int *) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 682 vertices.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio::ExodusII &, pylith::int_array *, pylith::int_array *, int *, int *) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 1276 cells in 2 blocks.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:279:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Found 5 node sets.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:305:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'fault' with id 10 containing 39 nodes.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:305:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_xpos' with id 21 containing 24 nodes.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:305:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_xneg' with id 22 containing 24 nodes.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:305:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_ypos' with id 23 containing 21 nodes.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:305:void pylith::meshio::MeshIOCubit::_readGroups(pylith::meshio::ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_yneg' with id 24 containing 21 nodes.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiocubit(info)
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 4.834519229177e-02
 Linear solve converged due to CONVERGED_ATOL iterations 35
 1 SNES Function norm 2.664525811959e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The MeshIOCubit reader includes diagnostic information in the journal output related to the sizes of the nodesets and material blocks.

Step 2: Single Earthquake Rupture and Velocity Boundary Conditions

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	spatialdata.spatialdb.SimpleDB

Simulation parameters

This example involves a quasi-static simulation that solves for the deformation from velocity boundary conditions and prescribed coseismic slip on the fault.
We let strain accumulate due to the motion of the boundaries and then release the strain by prescribing 2 meters of right-lateral slip at t=100 years.
Fig. 56 shows the boundary conditions on the domain.
The parameters specific to this example are in step02_slip_velbc.cfg.

[image:]
Fig. 56 Boundary conditions for quasistatic simulation with velocity boundary conditions and coseismic slip.
We set the x displacement to zero on the +x and -x boundaries.
We set the y velocity to -1 cm/yr on the +x boundary and +1 cm/yr on the -x boundary.
We prescribe 2 meters of right-lateral slip to occur at 100 years to release the accumulated strain energy.

Listing 77 Time stepping parameters for Step 2.

[pylithapp.problem]
initial_dt = 5.0*year
start_time = -5.0*year
end_time = 120.0*year

Boundary conditions

We switch the Dirichlet boundary conditions from specifying an initial amplitude to specifying a constant velocity,

(173)\[\begin{align}
\dot{u}_x(-50km,y) &= 0,\\
\dot{u}_y(-50km,y) &= +1 cm/yr,\\
\dot{u}_x(+50km,y) &= 0,\\
\dot{u}_y(+50km,y) &= -1 cm/yr.
\end{align}\]

Listing 78 Dirichlet boundary conditions for Step 2. We only show the details for the +x boundary.

[pylithapp.problem.bc.bc_xpos]
use_initial = False
use_rate = True

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Dirichlet BC +x boundary
db_auxiliary_field.iohandler.filename = disprate_bc_xpos.spatialdb

As in Step 1 we prescribe 2.0 meters of right-lateral slip, but in this case we set slip to occur at t=100 years.

Listing 79 Prescribed slip parameters for Step 2.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [100.0*year, -2.0*m, 0.0*m]

Running the simulation

Listing 80 Run Step 2 simulation

$ pylith step02_slip_velbc.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)

-- many lines omitted --

24 TS dt 0.05 time 1.15
 0 SNES Function norm 5.390420823432e-04
 Linear solve converged due to CONVERGED_ATOL iterations 29
 1 SNES Function norm 1.250412952119e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
25 TS dt 0.05 time 1.2
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output written to the terminal is identical to that from Step 1.
At the end of the output, we see that the simulation advanced the solution 25 time steps.
Remember that the PETSc TS monitor shows the nondimensionalized time and time step values.

Visualizing the results

In Fig. 57 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/strikeslip-2d directory.

Listing 81 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next, we override the default name of the simulation file with the name of the current simulation.

Listing 82 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_slip_velbc"

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

Tip

You can use the “play” button to animate the solution in time.

[image: Solution for Step 2 at t=100 yr. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 57 Solution for Step 2 at t=100 yr.
The colors of the shaded surface indicate the magnitude of the y displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
The coseismic fault slip at 100 years releases all of the accumulated strain energy.

Step 3: Multiple Earthquake Ruptures and Velocity Boundary Conditions

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	spatialdata.spatialdb.SimpleDB

Simulation parameters

This example involves a quasistatic simulation that solves for the deformation from velocity boundary conditions and multiple earthquake ruptures on the fault.
The velocity boundary conditions match those in Step 2.
We prescribe the first earthquake rupture to occur at 100 years with 1 meter of right-lateral slip and the second earthquake rupture to occur at 200 years with 3 meters of right-lateral slip.
Fig. 58 shows the boundary conditions on the domain.
The parameters specific to this example are in step03_multislip_velbc.cfg.

[image:]
Fig. 58 Boundary conditions for quasi-static simulation with velocity boundary conditions and coseismic slip.
We set the x displacement to zero on the +x and -x boundaries.
We set the y velocity to -1 cm/yr on the +x boundary and +1 cm/yr on the -x boundary.
We prescribe 1 meter of right-lateral slip to occur at 100 years and 3 meters of right-lateral slip to occur at 200 years.

Listing 83 Prescribed slip rupture parameters for Step 3 with two earthquake ruptures on the strike-slip fault.

[pylithapp.problem.interfaces.fault]
eq_ruptures = [one, two]

[pylithapp.problem.interfaces.fault.eq_ruptures.one]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture one
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [100.0*year, -1.0*m, 0.0*m]

[pylithapp.problem.interfaces.fault.eq_ruptures.two]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture two
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [200.0*year, -3.0*m, 0.0*m]

Running the simulation

Listing 84 Run Step 3 simulation

$ pylith step03_multislip_velbc.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)

-- many lines omitted --

25 TS dt 0.1 time 2.4
 0 SNES Function norm 1.078084164687e-03
 Linear solve converged due to CONVERGED_ATOL iterations 29
 1 SNES Function norm 2.500834427760e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
26 TS dt 0.1 time 2.5
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output written to the terminal is identical to that from Step 1.
At the end of the output, we see that the simulation advanced the solution 26 time steps.
Remember that the PETSc TS monitor shows the nondimensionalized time and time step values.

Visualizing the results

In Fig. 59 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
As in Step 2 we override the default name of the simulation file with the name of the current simulation.

Listing 85 Set the simulation in the ParaView Python Shell.

>>> SIM = "step03_multislip_velbc"

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

Tip

You can use the “play” button to animate the solution in time.

[image: Solution for Step 3 at t=190 yr. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 59 Solution for Step 3 at t=190 yr.
The colors of the shaded surface indicate the magnitude of the y displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 4: Variable Coseismic Slip

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

Simulation parameters

We use this example to illustrate prescribing slip that varies along the strike of the fault.
This example also serves as a means to generate coseismic displacements at fake GPS stations.
In Step 6 we will use the displacements at these stations along with static Green’s functions computed in Step 5 to invert for the slip on the fault.

We prescribe left-lateral slip that varies along the strike of the fault with fixed displacements on the +x and -x boundaries (Fig. 60), similar to what we had in Step 1.
The slip is nonzero over the region -20 km \(\le\) y \(\le\) +20 km with a peak slip of 80 cm at y=-0.5 km (Fig. 62).

This example involves a static simulation that solves for the deformation from prescribed coseismic slip on the fault.
Fig. 60 shows the boundary conditions on the domain.
The parameters specific to this example are in step04_varslip.cfg.

[image:]
Fig. 60 Boundary conditions for static coseismic slip.
We set the x and y displacement to zero on the +x and -x boundaries and prescribe left-lateral slip that varies along strike.

We increase the basis order of the solution subfields to 2 to better resolve the spatial variation in slip.
We also add output of the solution at fake GPS stations given in the file gps_stations.txt.
You can use the Python script generate_gpsstations.py to generate a different random set of stations; the default parameters will generate the provided gps_stations.txt file.

[image:]

Fig. 61 Location of randomly distributed fake GPS stations in gps_stations.txt.

Listing 86 Solution and output parameters for Step 4. We use a basis order of 2 for the solution fields and add output of the solution at fake GPS stations.

[pylithapp.problem]
defaults.quadrature_order = 2

[pylithapp.problem.solution.subfields]
displacement.basis_order = 2
lagrange_multiplier_fault.basis_order = 2

[pylithapp.problem]
solution_observers = [domain, top_boundary, bot_boundary, gps_stations]
solution_observers.gps_stations = pylith.meshio.OutputSolnPoints

[pylithapp.problem.solution_observers.gps_stations]
label = gps_stations
reader.filename = gps_stations.txt
reader.coordsys.space_dim = 2

The earthquake rupture occurs along the central portion of the fault with spatially variable slip.

[image:]
Fig. 62 Prescribed left-lateral slip that varies along the strike of the fault.
A strike of 0 corresponds to y=0.

We use a SimpleDB to define the spatial variation in slip.

Listing 87 Prescribed slip parameters for Step 4.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = slip_variable.spatialdb
db_auxiliary_field.query_type = linear

Running the simulation

Listing 88 Run Step 4 simulation

$ pylith step04_varslip.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 3.840123479624e-03
 Linear solve converged due to CONVERGED_ATOL iterations 73
 1 SNES Function norm 2.286140232631e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output written to the terminal matches that in our previous simulations.
At the end of the output written to the terminal, we see that the solver advanced the solution one time step (static simulation).
The linear solve converged after 73 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol).
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 63 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
As in Steps 2-3 we override the default name of the simulation file with the name of the current simulation.

Listing 89 Set the simulation in the ParaView Python Shell.

>>> SIM = "step04_varslip"

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
We can add the displacement vectors at the fake GPS stations using the viz/plot_dispstations.py Python script.

[image: Solution for Step 4. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 63 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the y displacement, and the deformation is exaggerated by a factor of 1000.
The displacement vectors at the fake GPS stations use en exaggeration factor of 50,000.

Step 5: Green’s Functions

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	“Green’s functions”

	Fault slip impulses

Simulation parameters

In this example we compute static Green’s functions for fault slip and use then in Step 6 to invert for fault slip.
We generated the “observations” for the slip inversion in Step 4.

We impose fault slip impulses over the central portion of the strike-slip fault (-25 km \(\le\) y \(\le\) +25km), which is slightly larger than where we specified coseismic in Step 4. Fig. 64 summarizes the boundary conditions and fault slip.
The parameters specific to this example are in step05_greensfns.cfg.

[image:]
Fig. 64 Boundary conditions for static Green’s functions.
We set the x and y displacement to zero on the +x and -x boundaries and prescribe left-lateral slip impulses.

We use the GreensFns problem and specify the fault on which to impose fault slip impulses.
As in Step 4, we include output at the fake GPS stations using OutputSolnPoints.
In the fault interfaces section we set the fault type to FaultCohesiveImpulses for our fault where we want to impose fault slip impulses for the Green’s functions.
We also use a spatial database to limit the section of the fault where we impose the fault slip impulses to -25 km \(\le\) y \(\le\) +25 km.

Important

Currently, a basis order of 1 (default) for the slip auxiliary subfield is the only choice that gives accurate results in a slip inversion due to the factors described here.

The basis order for the slip auxiliary subfield controls the representation of the slip field for the impulses.
For a given impulse, a basis order of 1 will impose unit slip at a vertex with zero slip at all other vertices.
Likewise, a basis order of 0 will attempt to impose unit slip over a cell with zero slip in all other cells; however, this creates a jump in slip at the cell boundaries that cannot be accurately represented by the finite-element solution.
As a result, you should not use a basis order of 0 for the slip auxiliary field.
A basis order of 2 will impose slip at vertices as well as edge degrees of freedom in the cell.
Because PyLith output decimates the basis order to 0 or 1, you should avoid this choice of basis order as well until we provide better ways to output fields discretized with higher order basis functions.

Listing 90 Parameters for computing static Green’s functions for fault slip impulses. We change the problem type and specify the fault on which we apply the slip impulses.

[pylithapp]
problem = pylith.problems.GreensFns

[pylithapp.greensfns]
label = fault
label_value = 20

Listing 91 Parameters for the slip impulses. We change the fault type and limit the impulses to the lateral slip component.

[pylithapp.problem.interfaces]
fault = pylith.faults.FaultCohesiveImpulses

[pylithapp.problem.interfaces.fault]
impulse_dof = [1]

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = slip_impulses.spatialdb

auxiliary_subfields.slip.basis_order = 1

Running the simulation

Listing 92 Run Step 5 simulation

$ pylith step05_greensfns.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(inf
 -- Component 'reader': Domain bounding box:
 (-50000, 50000)
 (-75000, 75000)

-- many lines omitted --

 -- Component 'problem': Computing Green's function 12 of 12.
 0 SNES Function norm 3.027654014252e-03
 Linear solve converged due to CONVERGED_ATOL iterations 46
 1 SNES Function norm 2.204080482014e-12
Nonlinear solve converged due to CONVERGED_ITS iterations 1
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- greensfns(info)
 -- Finalizing problem.
WARNING! There are options you set that were not used!
WARNING! could be spelling mistake, etc!
There are 3 unused database options. They are:
Option left: name:-ts_error_if_step_fails (no value)
Option left: name:-ts_monitor (no value)
Option left: name:-ts_type value: beuler

The beginning of the output written to the terminal matches that in our previous simulations.
The second half of the output written to the terminal resembles the output from time-dependent problems, but with the time step information replaced by the impulse information.
The journal info associated with the GreensFns component (journal.info.greensfns) turns on the impulse information.
We get warnings about unused PETSc options because we do not use time stepping.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 65 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
As in Step 4 we override the default name of the simulation file with the name of the current simulation.

Listing 93 Set the simulation in the ParaView Python Shell.

>>> SIM = "step05_greensfns"

Next we run both the viz/plot_dispwarp.py and viz/plot_dispstations.py Python scripts as described in ParaView Python Scripts.

Tip

You can use the “play” button (right triangle) to flip between the solution for the different fault slip impulses.

[image: Solution for Step 5. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 65 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the y displacement, and the deformation is exaggerated by a factor of 1000.
The displacement vectors at the fake GPS stations use en exaggeration factor of 50,000.

Step 6: Least Squares Fault Slip Inversion

In this example we do a simple static slip inversion using least squares.
We treat the displacements at the fake GPS stations in Step 4 as the “observations” and use the Green’s functions from Step 5 to invert for the fault slip that we prescribed in Step 4.

We use simple generalized inversion method with penalties to minimize the seismic moment.
The Python script invert_slip.py will load the observations from Step 4 and Green’s functions and respones from Step 5 and invert for the slip.

Listing 94 Run the fault slip inversion code.

$./invert_slip.py

Show command line options for the inversion code
$./invert_slip.py --help

By default, the inversion code will write the results of the inversion to output/step06_greensfns-inversion_results.txt.

Plotting the results

If you are using the PyLith binary, which includes the matplotlib Python module, or have it installed, then you can plot the results of the simulation using the viz/plot_inversion_results.py Python script.

Listing 95 Plot the inversion results using the matplotlib Python module.

$./viz/plot_inversion_results.py

[image: Results of slip inversion in Step 6.]
Fig. 66 Results of slip inversion in Step 6.
The thick black line shows the prescribed slip in Step 4.
The thin colored lines show the slip from the inversion with different penalty factors.

::{tip}
You can pass--no-gui as a command line argument to the plotting script turn off displaying the plot window.
This is useful if you do not have a matplotlib GUI backend.

Step 7: Bayesian Fault Slip Inversion

Danger

This examples requires the CATMIP Bayesian inversion framework which is not yet publicly available.

In this example we perform the same inversion as in Step 6, but replace the least squares inversion with the CATMIP Bayesian inversion framework.
We demonstrate inverting for fault slip using both the original CATMIP algorithm (Step 7a) and the crossfade CATMIP algorithm (Step 7b).

We assume a uniform distribution with positive slip values but use a logistic (sigmoid) distribution to compute the probability.
This helps prevent back slip.

Inversion using original CATMIP algorithm

The catmip_pylith_staticslip executable uses the original CATMIP algorithm and must be run using at least 2 processes (1 manager process and at least 1 worker process).
The model parameters for the inversion are specified in step07a_catmip.in (general CATMIP parameters) and catmip_parameters.txt (specific to the PyLith static slip model).
Currently, the catmip_parameters.txt filename is hardwired in the PyLith static slip model code.

Listing 96 General CATMIP parameters in step07a_catmip.in.

Use 100 samples and Markov chains with a length of 50
N 100
Nsteps 50

Use the current directory for user input and write output files as output/step07a-catmip-
data_directory .
output_directory ./output
output_prefix step07a_catmip-

Listing 97 Parameters in catmip_parameters.txt for static slip inversion using the original CATMIP algorithm.

Sample parameter file for pylith_catmip model.

Data files
filename_observations = output/step04_varslip-gps_stations.h5
filename_greens_fns = output/step05_greensfns-gps_stations.h5

Model parameters
rake_parallel_prior = logistic
rake_parallel_prior_k = 25.0
rake_parallel_prior_min_sample_value = 0.01
rake_parallel_prior_max_sample_value = 2.0

rake_perpendicular_prior = gaussian

For a 2D problem we only have 1 component of slip.
num_impulse_components = 1

Listing 98 Run the fault slip inversion using the original CATMIP algorithm.

mpiexec -n 2 catmip_pylith_staticslip step07a_catmip.in

By default, the CATMIP code will write the results of the inversion to output/step07a_catmip-*.
The .gsl files are raw binary files that can be read using Python.

Step 7a: Plotting the results

If you are using the PyLith binary, which includes the matplotlib Python module, or have it installed, then you can plot the results of the simulation using the viz/plot_catmip_results.py Python script.

Listing 99 Plot the CATMIP inversion results using the matplotlib Python module.

viz/plot_catmip_results.py --catmip-theta=output/step07a_catmip-theta20.bin

[image: Results of slip inversion in Step 7a.]
Fig. 67 Results of slip inversion in Step 7a.
The thick black line shows the prescribed slip in Step 4.
The solid orange line shows the median slip, the shaded orange regions shows the median plus and minus one standard deviation, and the dashed lines show the minimum and maximum values.
The median values are almost identical to the results with minimal smoothing in Step 6.

::{tip}
You can pass--no-gui as a command line argument to the plotting script turn off displaying the plot window.
This is useful if you do not have a matplotlib GUI backend.

Inversion using CF-CATMIP algorithm

The cfcatmip_pylith_staticslip executable uses the CF-CATMIP algorithm and must be run using at least 2 processes (1 manager process and at least 1 worker process).
The model parameters for the inversion are specified in step07b_cfcatmip.in (general CATMIP parameters) and cfcatmip_parameters.txt (specific to the PyLith static slip model).
Currently, the cfcatmip_parameters.txt filename is hardwired in the PyLith static slip model code.
We use the same parameters for the prior distribution of model parameters.
For the conjugate posterior distribution, we use a Gaussian distribution with broad enough parameters to sample the parameter space; the CF-CATMIP algorithm is not particularly sensitive to the median and standard deviation of the conjugate posterior Gaussian distribution.

Listing 100 General CATMIP parameters in step07b_catmip.in.

Use 100 samples and Markov chains with a length of 50
N 100
Nsteps 50

Use the current directory for user input and write output files as output/step07b-cfcatmip-
data_directory .
output_directory ./output
output_prefix step07b_cfcatmip-

Listing 101 Parameters in cfcatmip_parameters.txt for static slip inversion using the CF-CATMIP algorithm.

Sample parameter file for pylith_catmip model.

Data files
filename_observations = output/step04_varslip-gps_stations.h5
filename_greens_fns = output/step05_greensfns-gps_stations.h5

Model parameters
rake_parallel_prior = logistic
rake_parallel_prior_k = 25.0
rake_parallel_prior_min_sample_value = 0.01
rake_parallel_prior_max_sample_value = 2.0

rake_perpendicular_prior = gaussian

conjugate_posterior = gaussian
conjugate_posterior_median = 0.5
conjugate_posterior_stddev = 0.2

num_impulse_components = 1

Listing 102 Run the fault slip inversion using the CF-CATMIP algorithm.

mpiexec -n 2 cfcatmip_pylith_staticslip step07b_cfcatmip.in

By default, the CATMIP code will write the results of the inversion to output/step07b_catmip-*.
The .gsl files are raw binary files that can be read using Python.

Step 7b: Plotting the results

If you are using the PyLith binary, which includes the matplotlib Python module, or have it installed, then you can plot the results of the simulation using the viz/plot_catmip_results.py Python script.

Listing 103 Plot the CATMIP inversion results using the matplotlib Python module.

viz/plot_catmip_results.py --catmip-theta=output/step07b_cfcatmip-theta1.bin

[image: Results of slip inversion in Step 7b.]
Fig. 68 Results of slip inversion in Step 7b.
The thick black line shows the prescribed slip in Step 4.
The solid orange line shows the median slip, the shaded orange regions shows the median plus and minus one standard deviation, and the dashed lines show the minimum and maximum values.
The results are almost identical to those in Step 7a.

Suggested Exercises

	Increase the contrast in the shear modulus across the fault. How does this affect the solution?

	Create .cfg files to run Steps 2 and 3 with a Cubit mesh.

	Change Step03 to include multiple ruptures at different time intervals, while still accounting for the accumulated slip deficit.

	Change the distribution and number of fake GPS stations in Steps 4 and 5. How does this affect the inversion results?

	Change the distribution of slip in Step 4. How does this affect the inversion results?

	Create Cubit Journal files that build up the geometry from points and curves, analogous to the Gmsh Python script.

	Create a Gmsh Python script that generates the geometry from a cross-section of a 3D block, analogous to the provided Cubit Journal files.

Vertical Cross-Section of a Reverse Fault with Splay (2D)

The files are in the directory examples/reverse-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	generate_gmsh.py:

	Python script to generate mesh using Gmsh.

	*.msh:

	Gmsh mesh files generated by Gmsh.

	*.jou:

	Files used to construct the finite-element mesh using CUBIT/Trelis.

	*.exo:

	Exodus II mesh files generated by Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This suite of examples demonstrates use of a number of features for a vertical cross section of a reverse fault accompanied by a splay fault (Fig. 69) with elastic and viscoelastic material properties.
We separately consider loading from gravitational body forces, surface tractions, and coseismic slip.
We build on the previous examples and add complexity through a series of steps:

	Step 1:

	Gravitational body forces and linear isotropic elasticity.

	Step 2:

	Gravitational body forces and linear isotropic elasticity with a reference stress state.

	Step 3:

	Gravitational body forces and linear isotropic incompressible elasticity.

	Step 4:

	Surface tractions and linear isotropic linear elasticity.

	Step 5:

	Earthquake rupture on one fault and linear isotropic linear elasticity.

	Step 6:

	Earthquake rupture on two faults and linear isotropic linear elasticity.

	Step 7:

	Earthquake rupture on two faults and linear isotropic Maxwell viscoelastic rheology.

	Step 8:

	Earthquake rupture on two faults and linear isotropic powerlaw viscoelastic rheology.

[image: Geometry used for 2D reverse fault example.]
Fig. 69 Diagram of geometry for domain with reverse and splay faults and three materials (crust, slab, and wedge).
The domain extends from -100 km to +100 km in the x direction and from -100 km to 0 in the y direction.
We refer to the domain boundaries using the names shown in the diagram.

Important

We decribe how to generate the finite-element mesh using both Gmsh and Cubit.
The files for both methods are included.
We use the Gmsh files in the PyLith parameter files.
See examples/strikeslip-2d/step01_slip_cubit.cfg for a description of how to modify the parameter files to switch from using mesh files from Gmsh to mesh files from Cubit.

Example Workflow

	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information

	Step 1: Gravitational Body Forces
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Gravitational Body Forces with Reference Stress
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Gravitational Body Forces with Incompressible Elasticity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 4: Surface Tractions
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 5: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 6: Slip on Two Faults and Elastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 7: Slip on Two Faults and Maxwell Viscoelastic Materials
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 8: Slip on Two Faults and Power-law Viscoelastic Materials
	Simulation parameters

	Power-law spatial database

	Running the simulation

	Visualizing the results

	Suggested Exercises

Gmsh Mesh

Geometry

We construct the geometry by first creating points, then connecting the points into curves, and finally the curves into surfaces.
Fig. 70 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Gmsh for generating the mesh.]
Fig. 70 Geometry created in Gmsh for generating the finite-element mesh.
We construct curves from points (p1, …, p9) and surfaces from the curves (for example, c_yneg).
The arrows indicate the direction (orientation) of the curves.

Important

Each curve in Gmsh has a direction (orientation).
The direction is from the starting point to the ending point.
When connecting curves into surfaces, you must connect the curves in a consistent direction.
We connect the curves in a counter-clockwise direction.
To reverse the direction of a curve, use the negative tag.

Meshing using Python Script

We use the Python script generate_gmsh.py to create the geometry and generate the mesh.
The script is structured identically to the one we used in examples/strikeslip-2d.
We create a class App that implements the functionality missing in gmsh_utils.GenerateMesh.
We must implement the create_geometry(), mark(), and generate_mesh() methods that are abstract in the GenerateMesh base class.
The main difference is that the geometry is slightly more complex, and we calculate the location of the points on the fault using trigonometry.

We use the Gmsh MeshSize options to define a discretization size that grows slowly at a geometric rate with distance from the main fault.

Listing 104 Run the generate_gmsh.py Python script to generate the mesh.

Generate a mesh with triangular cells and save it to `mesh_tri.msh` (default filename).
$./generate_gmsh.py --write

Save as above but start the Gmsh graphical interface after saving the mesh.
$./generate_gmsh.py --write --gui

Create only the geometry and start the Gmsh graphical interface.
$./generate_gmsh.py --geometry --gui

Show available command line arguments.
$./generate_gmsh.py --help

By default the Python script will generate a finite-element mesh with triangular cells and save it to the file mesh_tri.msh.
You can view the mesh using Gmsh either by using the --gui command line argument when you generate the mesh or running Gmsh from the command line and opening the file.

Listing 105 View the Gmsh mesh file mesh_tri.msh using Gmsh.

gmsh -open mesh_tri.msh

[image: Finite-element mesh with triangular cells generated by Gmsh.]

Fig. 71 Finite-element mesh with triangular cells generated by Gmsh.

Cubit Mesh

Geometry

We construct the geometry by taking a horizontal cross-section of a 3D block.
Alternatively, we could have constructed the geometry by building it up from points and curves like we did with Gmsh.
Fig. 72 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Cubit for generating the mesh.]
Fig. 72 Geometry created in Cubit for generating the finite-element mesh.
The names of the verties and curves match the ones we use in the Cubit journal files.

Meshing using Journal Scripts

We use Cubit journal files mesh_tri.jou and mesh_quad.jou to generate triangular and quadrilateral meshes, respectively.
Both of these journal files make use of the geometry.jou, gradient.jou, and createbc.jou files for creating the geometry, setting the discretization size, and tagging boundary conditions, faults, and materials, respectively.
We use the Cubit graphical user interface to play the Journal files.

We create a brick, extracting a midsurface from it, and then splitting the remaining surface with an extended fault and a splay surface.
We then assign names to the surfaces, curves, and important vertices that we use when we specify the mesh sizing information and defining blocks and nodesets.

Important

We use IDless journaling in CUBIT.
This allows us to reference objects in a manner that should be independent of the version of CUBIT that is being used.
In the journal files, the original command used is typically commented out, and the following command is the equivalent IDless command.

Important

In addition to providing nodesets for the fault and splay, it is also important to provide nodesets defining the buried edges of these two surfaces.
In 2D this consists of a single vertex for each surface.
This information is required by PyLith to form the corresponding cohesive cells defining fault surfaces.

Note

Examine how we set the discretization size in Gmsh and Cubit.
In both cases the discretization size increases at a geometric rate with distance from the main fault.
For this simple geometry, it required less than 10 lines of Python code in Gmsh but significantly more lines in Cubit.
In Gmsh the code is very general and remains the same even as the domain geometry becomes more complex, whereas in Cubit the number of commands increases quickly as the geometry becomes more complex.

Once you have run either the mesh_tri.jou or mesh_quad.jou journal file to construct the geometry and generate the mesh, you will have a corresponding Exodus-II file (mesh_tri.exo or mesh_quad.exo).
These are NetCDF files, and they can be loaded into ParaView.
This can be done by either running ParaView and loading the file, or using the script provided in the viz directory.
For example, if ParaView is in your path, you can run the
following command:

Listing 106 Start paraview and run the viz/plot_mesh.py Python script to view the mesh with triangular cells.

paraview --script=viz/plot_mesh.py

[image: Finite-element mesh with triangular cells generated by Cubit.]

Fig. 73 Finite-element mesh with triangular cells generated by Cubit.

To load the mesh with quadrilateral cells, open the Python Shell in ParaView and set the EXODUS_FILE variable, and then run the viz/plot_mesh.py Python script.
See ParaView Python Scripts for more information about running ParaView Python scripts.

Listing 107 Load a different Exodus file generated by Cubit by setting the EXODUS_FILE variable in the ParaView Python Shell.

EXODUS_FILE = "mesh_quad.exo"

[image: Finite-element mesh with quadrilateral cells generated by Cubit.]

Fig. 74 Finite-element mesh with quadrilateral cells generated by Cubit.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg, which contains numerous comments, so we only summarize the parameters here.

We output the solution over the domain and the ground surface (+y boundary).

Listing 108 Parameters for output of the solution over the domain and ground surface (+y boundary).

[pylithapp.problem]
solution_observers = [domain, boundary]
solution_observers.boundary = pylith.meshio.OutputSolnBoundary

[pylithapp.problem.solution_observers.boundary]
label = boundary_ypos
label_value = 13

These static and quasi-static simulations solve the elasticity equation.
We use the same material properties for several simulations in this directory, so we specify them in pylithapp.cfg to avoid repeating the information in the file with parameters for each simulation.
We use a SimpleDB spatial database so that we can simply use a different spatial database file when we change the bulk rheology.

Listing 109 Material parameters for isotropic, linear elasticity. We only show the details for the slab material.

[pylithapp.problem]
materials = [slab, crust, wedge]

[pylithapp.problem.materials.slab]
description = Slab material below main fault
label_value = 1

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Elastic properties for slab
db_auxiliary_field.iohandler.filename = mat_elastic.spatialdb

auxiliary_subfields.density.basis_order = 0
auxiliary_subfields.gravitational_acceleration.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

Similarly, for all of the simulations in this directory we use Dirichlet (displacement) boundary conditions on the +x, -x, and -y boundaries that constrain the displacement component perpendicular to the fault.

Listing 110 Dirichlet boundary condition parameters common to all simulations in this directory. We only show the details for the +x boundary.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg]
bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xpos]
label = boundary_xpos
label_value = 11
constrained_dof = [0]
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC +x edge

auxiliary_subfields.initial_amplitude.basis_order = 0

Step 1: Gravitational Body Forces

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.GravityField

Simulation parameters

This example involves a static simulation that solves for the deformation from loading by gravitational body forces.
Fig. 75 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_gravity.cfg.

[image:]
Fig. 75 We apply roller boundary conditions on the lateral sides and bottom of the domain.

We solve the static elasticity equation with gravitational body forces,

(174)\[\begin{gather}
\vec{s} = \left(\begin{array}{c} \vec{u} \end{array}\right)^T \\
\rho(\vec{x}) \vec{g} + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0}.
\end{gather}\]

In 2D with gravitational body forces acting in the -y direction, we need to set the direction.
We also increase the basis order of the displacement solution field to 2 to resolve the linear increase in stress and strain with depth.
We also set the basis order of the Cauchy stress and strain derived fields for each material to 1.

Listing 111 Parameters for gravitational body forces for Step 1.

[pylithapp.problem]
gravity_field = spatialdata.spatialdb.GravityField
gravity_field.gravity_dir = [0.0, -1.0, 0.0]

defaults.quadrature_order = 2

[pylithapp.problem.solution.subfields.displacement]
basis_order = 2

[pylithapp.problem.materials.slab]
derived_subfields.cauchy_strain.basis_order = 1
derived_subfields.cauchy_stress.basis_order = 1

[pylithapp.problem.materials.crust]
derived_subfields.cauchy_strain.basis_order = 1
derived_subfields.cauchy_stress.basis_order = 1

[pylithapp.problem.materials.wedge]
derived_subfields.cauchy_strain.basis_order = 1
derived_subfields.cauchy_stress.basis_order = 1

Running the simulation

Listing 112 Run Step 1 simulation

$ pylith step01_gravity.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Solution.py:44:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/materials/RheologyElasticity.py:41:preinitialize
 -- isotropiclinearelasticity(info)
 -- Performing minimal initialization of elasticity rheology 'bulk_rheology'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/materials/RheologyElasticity.py:41:preinitialize
 -- isotropiclinearelasticity(info)
 -- Performing minimal initialization of elasticity rheology 'bulk_rheology'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/materials/RheologyElasticity.py:41:preinitialize
 -- isotropiclinearelasticity(info)
 -- Performing minimal initialization of elasticity rheology 'bulk_rheology'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/bc/DirichletTimeDependent.py:92:preinitialize
 -- dirichlettimedependent(info)
 -- Performing minimal initialization of time-dependent Dirichlet boundary condition 'bc_xneg'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/bc/DirichletTimeDependent.py:92:preinitialize
 -- dirichlettimedependent(info)
 -- Performing minimal initialization of time-dependent Dirichlet boundary condition 'bc_xpos'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/bc/DirichletTimeDependent.py:92:preinitialize
 -- dirichlettimedependent(info)
 -- Performing minimal initialization of time-dependent Dirichlet boundary condition 'bc_yneg'.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:175:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:221:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 1000*m
 Time scale: 3.15576e+09*s
 Pressure scale: 3e+10*m**-1*kg*s**-2
 Density scale: 2.98765e+23*m**-3*kg
 Temperature scale: 1*K
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:186:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_type = lu
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 2.873918352757e-01
 Linear solve converged due to CONVERGED_RTOL iterations 1
 1 SNES Function norm 3.025686251687e-13
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOPetsc reader and that it found the domain to extend from -100,000 m to +100,000 m in the x direction and from -100,000 m to 0 in the y direction.
The output also shows the scales for nondimensionalization and the PETSc options selected by PyLith.
This simulation did not use a fault, so PyLith used the LU preconditioner.

At the end of the output written to the terminal, we see that the solver advanced the solution one time step (static simulation).
The linear solve converged after 1 iterations and the norm of the residual met the relative convergence tolerance (ksp_rtol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 76 we use ParaView to visualize the displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Next, we use the Python Shell to change the default exaggeration of the deformation to 5 to account for the large deformation.

Listing 113 Change the exaggeration (warp scaling) to 5.

>>> WARP_SCALE = 5

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
We apply the gravitational body forces to an undeformed, stress-free domain.
As a result, the vertical deformation is about 2 kilometers.

[image: Solution for Step 1. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 5.]

Fig. 76 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 5.
The undeformed configuration is show by the gray wireframe.

Step 2: Gravitational Body Forces with Reference Stress

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.GravityField

Simulation parameters

This example involves using a reference stress state to minimize the deformation when we apply the gravitational body forces.
The solution will be the perturbation from the reference state with zero displacements.
This is one method for obtaining an initial stress state associated with gravitational body forces.
We use the same roller boundary conditions that we used in Step 1.
The parameters specific to this example are in step02_gravity_refstate.cfg.

We use a reference stress state that matches the overburden (lithostatic) pressure.
We have uniform material properties, so the overburden is

(175)\[\begin{equation}
\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = \int_0^z \rho g \, dz = \rho g z,
\end{equation}\]

where compressive stress is negative.

Listing 114 Parameters for reference stresses for Step 2. We only show the details for the slab material.

[pylithapp.problem.materials.slab]
db_auxiliary_field.iohandler.filename = mat_gravity_refstate.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.materials.slab.bulk_rheology]
use_reference_state = True

auxiliary_subfields.reference_stress.basis_order = 1
auxiliary_subfields.reference_strain.basis_order = 0

Running the simulation

Listing 115 Run Step 2 simulation

$ pylith step02_gravity_refstate.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 4.578015693966e-15
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 0
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.
WARNING! There are options you set that were not used!
WARNING! could be spelling mistake, etc!
There is one unused database option. It is:
Option left: name:-ksp_converged_reason (no value)

By design we set the reference stress state so that it matches the loading from gravitational body forces in our domain with uniform material properties.
As a result, the first nonlinear solver residual evaluation meets the convergence criteria.
The linear solver is not used; this is why PETSc reports an unused option at the end of the simulation.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 77 we use ParaView to visualize the displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 116 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_gravity_refstate"

[image: Solution for Step 2. The colors indicate the magnitude of the displacement.]

Fig. 77 Solution for Step 2.
The colors of the shaded surface indicate the magnitude of the displacement, which is zero.
The undeformed configuration is show by the gray wireframe.

Step 3: Gravitational Body Forces with Incompressible Elasticity

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.IncompressibleElasticity

	spatialdata.spatialdb.GravityField

	field split preconditioner

	Schur complement preconditioner

Simulation parameters

In this example we use incompressible elasticity (see Incompressible Isotropic Elasticity with Infinitesimal Strain (Bathe) for the finite-element formulation) to obtain the stress field associated with gravitational body forces,

(176)\[\begin{gather}
\vec{s} = \left(\vec{u} \quad \ p \right)^T, \\
\rho(\vec{x})\vec{g} + \boldsymbol{\nabla} \cdot \left(\boldsymbol{\sigma}^\mathit{dev}(\vec{u}) - p\boldsymbol{I}\right) = \vec{0}, \\
\vec{\nabla} \cdot \vec{u} + \frac{p}{K} = 0.
\end{gather}\]

Because the material is incompressible and the material is confined on the lateral boundaries and bottom, we do not expect any deformation.
In general, this is a more robust way to determine an initial stress state for gravitational body forces compared to using a reference stress state, especially when the material properties are not uniform.
We use the same roller boundary conditions that we used in Steps 1 and 2.
The parameters specific to this example are in step03_gravity_incompressible.cfg.

Listing 117 Parameters for incompressible elasticity in Step 3.

solution = pylith.problems.SolnDispPres

[pylithapp.problem.materials]
slab = pylith.materials.IncompressibleElasticity
crust = pylith.materials.IncompressibleElasticity
wedge = pylith.materials.IncompressibleElasticity

[pylithapp.problem.materials.slab]
db_auxiliary_field.iohandler.filename = mat_elastic_incompressible.spatialdb

[pylithapp.problem.materials.crust]
db_auxiliary_field.iohandler.filename = mat_elastic_incompressible.spatialdb

[pylithapp.problem.materials.wedge]
db_auxiliary_field.iohandler.filename = mat_elastic_incompressible.spatialdb

With pressure as a solution subfield, we add a Dirichlet boundary condition to set the confining pressure to 0 on the ground surface (+y boundary).

Listing 118 Adjustments to the Dirichlet boundary condition parameters for Step 3.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos]
bc.bc_ypos = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_ypos]
label = boundary_ypos
label_value = 13
constrained_dof = [0]
field = pressure
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC for pressure on +y edge

auxiliary_subfields.initial_amplitude.basis_order = 0

observers.observer.data_fields = [pressure]

Running the simulation

Listing 119 Run Step 3 simulation

$ pylith step03_gravity_incompressible.cfg

The output should look something like the following.
 >> /software/unix/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = full
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Ignoring PETSc options (already set):
fieldsplit_displacement_pc_type = lu
fieldsplit_pressure_pc_type = lu
pc_fieldsplit_schur_precondition = full
pc_fieldsplit_type = schur
pc_type = fieldsplit

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 4.866941773461e-01
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 3.099989574301e-13
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

PyLith detected use of incompressible elasticity, so it selected a field split preconditioner with an LU preconditioner for each of the solution subfields as described in PETSc Options.
As a result, the linear solve converged in 1 iterations.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 78 we use ParaView to visualize the displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 120 Set the simulation in the ParaView Python Shell.

>>> SIM = "step03_gravity_incompressible"

[image: Solution for Step 3. The colors indicate the magnitude of the displacement.]

Fig. 78 Solution for Step 3.
The colors of the shaded surface indicate the magnitude of the displacement.
The undeformed configuration is show by the gray wireframe.
There is negligible deformation and the stress state (not shown) matches the one in Step 2.

Step 4: Surface Tractions

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.bc.NeumannTimeDependent

Simulation parameters

This example focuses on loading via surface tractions on the +y boundary.
We apply tractions normal to the boundary with a trapezoidal distribution as shown in Fig. 79
We use the same roller boundary conditions that we used in Steps 1-3.
The parameters specific to this example are in step04_surfload.cfg.

[image:]
Fig. 79 We add a Neumann (traction) boundary condition on the +y boundary with roller boundary conditions on the lateral sides and bottom of the domain.

Listing 121 Surface load parameters for Step 4.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos]
bc.bc_ypos = pylith.bc.NeumannTimeDependent

[pylithapp.problem.bc.bc_ypos]
label = boundary_ypos
label_value = 13

db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Neumann BC +y edge
db_auxiliary_field.iohandler.filename = traction_surfload.spatialdb

db_auxiliary_field.query_type = linear

auxiliary_subfields.initial_amplitude.basis_order = 1

Running the simulation

Listing 122 Run Step 4 simulation

$ pylith step04_surfload.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 1.213351093160e-02
 Linear solve converged due to CONVERGED_ATOL iterations 1
 1 SNES Function norm 1.038106792811e-15
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

As expected from the use of the LU preconditioner and linear problem, both the linear and nonlinear solvers converged in 1 iterations.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 80 we use ParaView to visualize the displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 123 Set the simulation and exaggeration in the ParaView Python Shell.

>>> SIM = "step04_surfload"
>>> WARP_SCALE = 500

[image: Solution for Step 4. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 500.]

Fig. 80 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 500.
The undeformed configuration is show by the gray wireframe.

Step 5: Static Coseismic Slip

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

Simulation parameters

This example involves a static simulation that solves for the deformation from prescribed coseismic slip on the main fault.
We specify 2 meters of reverse slip.
Fig. 81 shows the boundary conditions on the domain.
The parameters specific to this example are in step05_onefault.cfg.

[image:]
Fig. 81 Boundary conditions for static coseismic slip on the main fault.
We prescribe 2 meters of reverse slip with roller boundary conditions on the lateral sides and bottom of the domain.

Important

In 2D simulations slip is specified in terms of opening and left-lateral components.
This provides a consistent, unique sense of slip that is independent of the fault orientation.
For our geometry in this example, right lateral slip corresponds to reverse slip on the dipping fault.

Important

The main fault contains one end that is buried within the domain.
When PyLith inserts cohesive cells into a mesh with buried edges (in this case a point), we must identify these buried edges so that PyLith properly adjusts the topology along these edges.

We adjust the solution field to include both displacement and the Lagrange multiplier associated with the fault.
For uniform prescribed slip we use a UniformDB.

Listing 124 Parameters for earthquake rupture on the main reverse fault in Step 5.

[pylithapp.problem]
solution = pylith.problems.SolnDispLagrange

[pylithapp.problem.interfaces.fault]
label = fault
label_value = 20
edge = fault_end
edge_value = 21
observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

Running the simulation

Listing 125 Run Step 5 simulation

$ pylith step05_onefault.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 2.129295960330e-02
 Linear solve converged due to CONVERGED_ATOL iterations 43
 1 SNES Function norm 1.577267844919e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

From the end of the output written to the terminal window, we see that the linear solver converged in 43 iterations and met the absolute convergence tolerance (ksp_atol).
As we expect for this linear problem, the nonlinear solver converged in 1 iteration.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 82 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 126 Set the simulation and exaggeration in the ParaView Python Shell.

>>> SIM = "step05_onefault"
>>> FIELD_COMPONENT = "X"

[image: Solution for Step 5. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 82 Solution for Step 5.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 6: Slip on Two Faults and Elastic Materials

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

Simulation parameters

In this example we add coseismic slip on the splay fault.
We specify 2 meters of reverse slip on the main fault and 1 meter of reverse slip on the splay fault.
Fig. 83 shows the boundary conditions on the domain.
The parameters specific to this example are in step06_twofaults-elastic.cfg.

[image:]
Fig. 83 Boundary conditions for static coseismic slip on both the main and splay faults.
We prescribe 2 meters of reverse slip on the main fault with 1 meter of reverse slip on the splay fauult.
We use roller boundary conditions on the lateral sides and bottom of the domain.

Important

In 2D simulations slip is specified in terms of opening and left-lateral components.
This provides a consistent, unique sense of slip that is independent of the fault orientation.
For our geometry in this example, right lateral slip corresponds to reverse slip on both of the dipping faults.

Important

Both faults contain one end that is buried within the domain.
The splay fault ends where it meets the main fault.
When PyLith inserts cohesive cells into a mesh with buried edges (in this case a point), we must identify these buried edges so that PyLith properly adjusts the topology along these edges.

For properly topology of the cohesive cells, the main fault must be listed first in the array of faults so that it will be created before the splay fault.

We create an array of 2 faults, which are FaultCohesiveKin by default, and use UniformDB objects to specify uniform reverse slip on each fault.
Because the wedge is not constrained by any Dirichlet boundary conditions,
we change the preconditioner for the displacement field to ilu to avoid a zero pivot.

Listing 127 Parameters for prescribed earthquake rupture on the main and splay faults for Step 6.

[pylithapp.problem]
interfaces = [fault, splay]

[pylithapp.problem.interfaces.fault]
label = fault
label_value = 20
edge = fault_end
edge_value = 21

observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture for main fault
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -2.0*m, 0.0*m]

[pylithapp.problem.interfaces.splay]
label = splay
label_value = 22
edge = splay_end
edge_value = 23

observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.splay.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture for splay fault
db_auxiliary_field.values = [initiation_time, final_slip_left_lateral, final_slip_opening]
db_auxiliary_field.data = [0.0*s, -1.0*m, 0.0*m]

[pylithapp.petsc]
fieldsplit_displacement_pc_type = ilu

Running the simulation

Listing 128 Run Step 6 simulation

$ pylith step06_twofaults_elastic.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 2.225574998436e-02
 Linear solve converged due to CONVERGED_ATOL iterations 415
 1 SNES Function norm 8.564274482242e-13
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

From the end of the output written to the terminal window, we see that the linear solver converged in 415 iterations and met the absolute convergence tolerance (ksp_atol).
As we expect for this linear problem, the nonlinear solver converged in 1 iteration.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 84 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 129 Set the simulation and exaggeration in the ParaView Python Shell.

>>> SIM = "step06_twofaults_elastic"
>>> FIELD_COMPONENT = "X"

[image: Solution for Step 6. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 84 Solution for Step 6.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.

Step 7: Slip on Two Faults and Maxwell Viscoelastic Materials

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearMaxwell

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

Simulation parameters

In this example we replace the linear, isotropic elastic bulk rheology in the slab with a linear, isotropic Maxwell viscoelastic rheology.
We also switch from a static simulation to a quasistatic simulation to compute the time-dependent relaxation in the slab.
We use the same boundary conditions as in Step 6.
The parameters specific to this example are in step07_twofaults_maxwell.cfg.

We use a very short relaxation time of 20 years, so we run the simulation for 100 years with a time step of 4 years.
We use a starting time of -4 years so that the first time step will advance the solution time to 0 years.

Listing 130 Time stepping parameters for Step 7.

[pylithapp.problem]
initial_dt = 4.0*year
start_time = -4.0*year
end_time = 100.0*year

normalizer.relaxation_time = 20.0*year

Listing 131 Maxwell viscoelastic bulk rheology parameters for the slab in Step 7.

[pylithapp.problem.materials]
slab.bulk_rheology = pylith.materials.IsotropicLinearMaxwell

[pylithapp.problem.materials.slab]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Maxwell viscoelastic properties
db_auxiliary_field.iohandler.filename = mat_maxwell.spatialdb

bulk_rheology.auxiliary_subfields.maxwell_time.basis_order = 0

Running the simulation

Listing 132 Run Step 7 simulation

$ pylith step07_twofaults_maxwell.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

25 TS dt 0.2 time 4.8
 0 SNES Function norm 2.589196279152e-05
 Linear solve converged due to CONVERGED_ATOL iterations 339
 1 SNES Function norm 6.643244443329e-13
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
26 TS dt 0.2 time 5.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

From the end of the output written to the terminal window, we see that the simulation advanced the solution 26 time steps.
The PETSc TS display time in the nondimensional units, so a time of 5 corresponds to 100 years.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 85 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 133 Set the simulation and exaggeration in the ParaView Python Shell.

>>> SIM = "step07_twofaults_maxwell"
>>> FIELD_COMPONENT = "X"

[image: Solution for Step 7. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 85 Solution for Step 7 at t=100 years.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
Viscoelastic relaxation results in significant deformation in the slab material.

Step 8: Slip on Two Faults and Power-law Viscoelastic Materials

Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicPowerLaw

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

	spatialdata.spatialdb.CompositeDB

Simulation parameters

In this example we replace the linear, isotropic Maxwell viscoelastic bulk rheology in the slab in Step 7 with an isotropic powerlaw viscoelastic rheology.
The other parameters remain the same as those in Step 6.
The parameters specific to this example are in step08_twofaults_powerlaw.cfg.

Listing 134 Power-law viscoelastic bulk rheology parameters for Step 8.

[pylithapp.problem.materials]
slab.bulk_rheology = pylith.materials.IsotropicPowerLaw

[pylithapp.problem.materials.slab]
db_auxiliary_field = spatialdata.spatialdb.CompositeDB
db_auxiliary_field.description = Power law material properties

bulk_rheology.auxiliary_subfields.power_law_reference_strain_rate.basis_order = 0
bulk_rheology.auxiliary_subfields.power_law_reference_stress.basis_order = 0
bulk_rheology.auxiliary_subfields.power_law_exponent.basis_order = 0

[pylithapp.problem.materials.slab.db_auxiliary_field]
Elastic properties
values_A = [density, vs, vp]
db_A = spatialdata.spatialdb.SimpleDB
db_A.description = Elastic properties for slab
db_A.iohandler.filename = mat_elastic.spatialdb

Power law properties
values_B = [
	 power_law_reference_stress, power_law_reference_strain_rate, power_law_exponent,
	 viscous_strain_xx, viscous_strain_yy, viscous_strain_zz, viscous_strain_xy,
	 reference_stress_xx, reference_stress_yy, reference_stress_zz, reference_stress_xy,
	 reference_strain_xx, reference_strain_yy, reference_strain_zz, reference_strain_xy,
	 deviatoric_stress_xx, deviatoric_stress_yy, deviatoric_stress_zz, deviatoric_stress_xy
]
db_B = spatialdata.spatialdb.SimpleDB
db_B.description = Material properties specific to power law bulk rheology for the slab
db_B.iohandler.filename = mat_powerlaw.spatialdb
db_B.query_type = linear

Power-law spatial database

New in v4.0.0

We use the utility script pylith_powerlaw_gendb (see pylith_powerlaw_gendb) to generate the spatial database mat_powerlaw.spatialdb with the power-law bulk rheology parameters.
We provide the parameters for pylith_powerlaw_gendb in powerlaw_gendb.cfg, which follows the same formatting conventions as the PyLith parameter files.

Listing 135 Generate spatial database with power-law viscoelastic material properties.

$ pylith_powerlaw_gendb powerlaw_gendb.cfg

Running the simulation

Listing 136 Run Step 8 simulation

$ pylith step08_twofaults_powerlaw.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-100000, 100000)
 (-100000, 0)

-- many lines omitted --

25 TS dt 0.2 time 4.8
 0 SNES Function norm 2.142894498538e-06
 Linear solve converged due to CONVERGED_ATOL iterations 200
 1 SNES Function norm 6.320401896875e-09
 Linear solve converged due to CONVERGED_ATOL iterations 67
 2 SNES Function norm 1.048498421861e-10
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 2
26 TS dt 0.2 time 5.
 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

As in Step 7, the simulation advances 26 time steps.
With a nonlinear bulk rheology, the nonlinear solver now requires several iterations to converge at each time step.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 86 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/reverse-2d directory.
Before running the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts, we set the simulation name in the ParaView Python Shell.

Listing 137 Set the simulation and exaggeration in the ParaView Python Shell.

>>> SIM = "step08_twofaults_powerlaw"
>>> FIELD_COMPONENT = "X"

[image: Solution for Step 8. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 86 Solution for Step 8 at t=100 years.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.
The undeformed configuration is show by the gray wireframe.
Our parameters for the power-law bulk rheology result in much less viscoelastic relaxation in this case compared to Step 7.

Suggested Exercises

	Change the reference stress state in Step 2 by editing the spatial database. How does this affect the solution?

	Create .cfg files to run the simulations with a Cubit mesh.

	Create additional spatial database files so that the material properties for each material are different. Rerun Steps 2 and 3. How does this affec the solution?

	Adjust the distribution of surface tractions in Step 4.

	Experiment with different basis orders of 1 or 2 for the solution subfields. Examine both the displacement and stress fields (included in the output files for the materials).

	Adjust the timing of the earthquake ruptures in Steps 6-8.

	Create Cubit Journal files that build up the geometry from points and curves, analogous to the Gmsh Python script.

	Create a Gmsh Python script that generates the geometry from a cross-section of a 3D block, analogous to the provided Cubit Journal files.

Vertical Cross-Section of Subduction Zone (2D)

The files are in the directory examples/subduction-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	generate_gmsh.py:

	Python script to generate mesh using Gmsh.

	*.msh:

	Gmsh mesh files generated by Gmsh.

	*.jou:

	Files used to construct the finite-element mesh using CUBIT/Trelis.

	*.exo:

	Exodus II mesh files generated by Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This example examines quasistatic interseismic and coseismic deformation in 2D for a subduction zone (see Fig. 87).
It is based on the 2011 M9.0 Tohoku-oki earthquake off the east coast of Japan.
We build on the previous examples and add complexity through a series of steps:

	Step 1:

	Static coseismic slip on the subduction interface.

	Step 2:

	Quasistatic interseismic deformation with creep on the top and bottom of the slab, except in the zone of coseismic slip.

	Step 3:

	Quasistatic earthquake cycle with prescribed coseismic slip and creep.

Warning

Steps 4-6 have not yet been updated for PyLith v3.

[image: Cartoon of subduction zone example.]
Fig. 87 Diagram of 2D subduction zone example.

[image: Geometry of subduction zone example.]
Fig. 88 Geometry of the 2D subduction zone example.
The domain extends from -600 km to +600 km in the x direction and from -340 km to 0 in the y direction.
We refer to the domain boundaries using the names shown in the diagram.

Important

We decribe how to generate the finite-element mesh using both Gmsh and Cubit.
The files for both methods are included.
We use the Gmsh files in the PyLith parameter files.
See examples/strikeslip-2d/step01_slip_cubit.cfg for a description of how to modify the parameter files to switch from using mesh files from Gmsh to mesh files from Cubit.

Example Workflow

	Gmsh Mesh
	Geometry

	Meshing using Python Script

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Static Coseismic Slip
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Quasistatic Interseismic Deformation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 3: Quasistatic Earthquake Cycle
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

Gmsh Mesh

Geometry

We construct the geometry by first creating points, then connecting the points into curves, and finally the curves into surfaces.
Fig. 89 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Gmsh for generating the mesh.]
Fig. 89 Geometry created in Gmsh for generating the finite-element mesh.
We construct curves from points (p_*) and surfaces from the curves (c_*).
The arrows indicate the direction (orientation) of the curves.

Meshing using Python Script

We use the Python script generate_gmsh.py to create the geometry and generate the mesh.
The script is structured identically to the one we used in examples/strikeslip-2d and examples/reverse-2d.
We create a class App that implements the functionality missing in gmsh_utils.GenerateMesh.
We must implement the create_geometry(), mark(), and generate_mesh() methods that are abstract in the GenerateMesh base class.
In this case the geometry is significantly more complex with arrays of points defining the top surface (topography and bathymetry) and the geometry of the slab.

We use the Gmsh MeshSize options to define a discretization size the grows slowly at a geometric rate with distance from the main fault.

Listing 138 Run the generate_gmsh.py Python script to generate the mesh.

Generate a mesh with triangular cells and save it to `mesh_tri.msh` (default filename).
$./generate_gmsh.py --write

Save as above but start the Gmsh graphical interface after saving the mesh.
$./generate_gmsh.py --write --gui

Create only the geometry and start the Gmsh graphical interface.
$./generate_gmsh.py --geometry --gui

By default the Python script will generate a finite-element mesh with triangular cells and save it to the file mesh_tri.msh.
You can view the mesh using Gmsh either by using the --gui command line argument when you generate the mesh or running Gmsh from the command line and opening the file.

Listing 139 View the Gmsh mesh file mesh_tri.msh using Gmsh.

gmsh -open mesh_tri.msh

[image: Finite-element mesh with triangular cells generated by Gmsh.]

Fig. 90 Finite-element mesh with triangular cells generated by Gmsh.

Cubit Mesh

Geometry

We construct the geometry following the same general procedure that we used with Gmsh.
We first create points, then connect the points into curves, and finally connect the curves into surfaces.
Fig. 91 shows the geometry and variables names of the vertices and curves.

[image: Geometry created in Cubit for generating the mesh.]
Fig. 91 Geometry created in Cubit for generating the finite-element mesh.
The names of the verties and curves match the ones we use in the Cubit journal files.

Meshing using Journal Scripts

We use Cubit journal files mesh_tri.jou and mesh_quad.jou to generate triangular and quadrilateral meshes, respectively.
Both of these journal files make use of the geometry.jou, gradient.jou, and createbc.jou files for creating the geometry, setting the discretization size, and tagging boundary conditions, faults, and materials, respectively.
We use the Cubit graphical user interface to play the Journal files.

We create a brick, extracting a midsurface from it, and then splitting the remaining surface with an extended fault and a splay surface.
We then assign names to the surfaces, curves, and important vertices that we use when we specify the mesh sizing information and defining blocks and nodesets.

Warning

In this example we do not use IDless journaling in Cubit.
The ids of some of the geometric entities might be depend on which version of Cubit you are using.
The differences are most likely to occur when we split curves.
For example, the section of the curve labeled c_topo might be labeled c_topo@A in your version with similar permutations for other curve sections.

Once you have run the mesh_tri.jou journal file to construct the geometry and generate the mesh, you will have a Exodus-II file (mesh_tri.exo).
These are NetCDF files, and they can be loaded into ParaView.
This can be done by either running ParaView and loading the file, or using the script provided in the viz directory.
For example, if ParaView is in your path, you can run the
following command:

Listing 140 Start paraview and run the viz/plot_mesh.py Python script to view the mesh with triangular cells.

paraview --script=viz/plot_mesh.py

[image: Finite-element mesh with triangular cells generated by Cubit.]

Fig. 92 Finite-element mesh with triangular cells generated by Cubit.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg, which contains numerous comments, so we only summarize the parameters here.

Metadata, Mesh, and Output

The pylithapp.metadata section specifies metadata common to all simulations in the directory.
We control the verbosity of the output written to stdout using journal.info.
We set the parameters for importing the finite-element mesh in pylithapp.mesh_generator.

Physics

These quasi-static simulations solve the elasticity equation and include a fault, so we have a solution field with both displacement and Lagrange multiplier subfields.

(177)\[\begin{gather}
\vec{s} = \left(\begin{array}{c} \vec{u} \quad \vec{\lambda} \end{array}\right)^T \\
\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\vec{u}) = \vec{0}
\end{gather}\]

We use the default TimeDependent problem and solution field with a single displacement subfield of basis order 1.
In addition to output of the solution over the domain, we output the solution over the ground surface (+y boundary).
For the domain we skip one time step between writing the solution to the file.

Listing 141 Solution and output parameters for all subduction-2d simulations.

[pylithapp.problem]
solution = pylith.problems.SolnDispLagrange

[pylithapp.problem]
solution_observers = [domain, groundsurf]
solution_observers.groundsurf = pylith.meshio.OutputSolnBoundary

[pylithapp.problem.solution_observers.domain]
Skip 1 time step between output for the domain.
trigger.num_skip = 1

[pylithapp.problem.solution_observers.groundsurf]
The `label` and `label_value` correspond to the name and tag of the
physical group in the Gmsh Python script.
label = groundsurf
label_value = 10

The physical properties for each material are specified in spatial database files.
For example, the elastic properties for the continental crust are in mat_concrust.spatialdb.
The provided spatial database files all use just a single point to specify uniform physical properties within each material.

Listing 142 Material parameters for the subduction-2d example suite. We only show the details for the continental crust material.

[pylithapp.problem]
materials = [continent_crust, ocean_crust, mantle]

[pylithapp.problem.materials]
[pylithapp.problem.materials.continent_crust]
description = Continental crust
label_value = 1

db_auxiliary_field.description = Continental crust properties
db_auxiliary_field.iohandler.filename = mat_concrust.spatialdb

observers.observer.trigger.num_skip = 1

auxiliary_subfields.density.basis_order = 0
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

Step 1: Static Coseismic Slip

Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	pylith.faults.KinSrcStep

	pylith.bc.ZeroDB

Simulation parameters

This example involves a static simulation that solves for the deformation from prescribed coseismic slip on the subduction interface.
The depth variation in the prescribed slip is based on the 2011 Tohoku-oki earthquake.
Fig. 93 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_coseismic.cfg.

[image:]
Fig. 93 Boundary conditions for static coseismic slip on the subduction interface.
We prescribe reverse slip that varies with depth and roller boundary conditions on the lateral sides and bottom of the domain.

We only presceibe slip on the subduction interface, so we create an array with 1 fault.
We specify slip as a function of depth, so we use a SimpleDB with linear interpolation.

Listing 143 Fault parameters for Step 1.

[pylithapp.problem]
interfaces = [fault]

[pylithapp.problem.interfaces.fault]
label = fault_slabtop
label_value = 21
edge = fault_slabtop_edge
edge_value = 31

observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = fault_coseismic.spatialdb
db_auxiliary_field.query_type = linear

Listing 144 Dirichlet boundary condition parameters for Step 1. We only show the details for the east east boundary of the crust.

[pylithapp.problem]
bc = [bc_east_crust, bc_east_mantle, bc_west, bc_bottom]

[pylithapp.problem.bc.bc_east_crust]
label = bndry_east_crust
label_value = 12
constrained_dof = [0]
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC on east boundary (crust)

Running the simulation

Listing 145 Run Step 1 simulation

$ pylith step01_coseismic.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-600000, 600000)
 (-600000, 399.651)
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Solution.py:44:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:175:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:221:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 1000*m
 Time scale: 3.15576e+09*s
 Pressure scale: 3e+10*m**-1*kg*s**-2
 Density scale: 2.98765e+23*m**-3*kg
 Temperature scale: 1*K
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:186:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const pylith::utils::PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_pc_type = lu
fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_pc_type = lu
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0
pc_fieldsplit_type = schur
pc_type = fieldsplit
pc_use_amat = true
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.05 time -0.05
 0 SNES Function norm 5.454651006059e-01
 Linear solve converged due to CONVERGED_ATOL iterations 85
 1 SNES Function norm 3.437540896787e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.05 time 0.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOPetsc reader and that it found the domain to extend from -600 km to +600 km in the x direction and from -600 km to 0 in the y direction.
The output also includes the scales used for nondimensionalization and the default PETSc options.

At the end of the output written to the terminal, we see that the solver advanced the solution one time step (static simulation).
The linear solve converged after 85 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 94 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
We start ParaView from the examples/subduction-2d directory and then run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 1. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 94 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Step 2: Quasistatic Interseismic Deformation

Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.UniformDB

	pylith.faults.KinSrcConstRate

	pylith.bc.ZeroDB

Simulation parameters

In this example we simulate the interseismic deformation associated with the oceanic crust subducting beneath the continental crust and into the mantle.
We prescribe steady aseismic slip of 8 cm/yr along the interfaces between the oceanic crust and mantle with the interface between the oceanic crust and continental crust locked as shown in Fig. 95.
The parameters specific to this example are in step02_interseismic.cfg.

[image:]
Fig. 95 Boundary conditions for quasistatic simulation for interseismic deformation.
We prescribe constant creep on the top and bottom of the subduction slab, except for the portion of the subduction interface where we imposed coseismic slip in Step 1.
We lock (zero creep) that part of the interface.

The simulation spans 150 years with an initial time step of 5 years.

Listing 146 Time stepping parameters for Step 2.

[pylithapp.timedependent]
initial_dt = 5.0*year
start_time = -5.0*year
end_time = 150.0*year

We create an array with 2 faults, one for the top of the slab and one for the bottom of the slab.
We use the constant slip rate kinematic source model with a uniform slip rate on the bottom of the slab and a slip rate that varies with depth on the top of the slab.

Listing 147 Prescribed slip parameters for Step 2.

[pylithapp.problem]
interfaces = [fault_slabtop, fault_slabbot]

[pylithapp.problem.interfaces.fault_slabtop]
label = fault_slabtop
label_value = 21
edge = fault_slabtop_edge
edge_value = 31

observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.fault_slabtop.eq_ruptures]
rupture = pylith.faults.KinSrcConstRate

[pylithapp.problem.interfaces.fault_slabtop.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = fault_slabtop_creep.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.problem.interfaces.fault_slabbot]
label = fault_slabbot
label_value = 22
edge = fault_slabbot_edge
edge_value = 32

observers.observer.data_fields = [slip]

[pylithapp.problem.interfaces.fault_slabbot.eq_ruptures]
rupture = pylith.faults.KinSrcConstRate

[pylithapp.problem.interfaces.fault_slabbot.eq_ruptures.rupture]
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.values = [initiation_time, slip_rate_left_lateral, slip_rate_opening]
db_auxiliary_field.data = [0.0*year, 8.0*cm/year, 0.0*cm/year]

We adjust the Dirichlet (displacement) boundary conditions on the lateral edges and bottom of the domain by pinning only the portions of the boundaries that are mantle and continental crust and not oceanic crust.

Listing 148 We use only 3 Dirichlet boundary conditions to allow the slab to move freely on the boundaries.

[pylithapp.problem]
bc = [bc_east_mantle, bc_west, bc_bottom]

Running the simulation

Listing 149 Run Step 2 simulation

$ pylith step02_interseismic.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-600000, 600000)
 (-600000, 399.651)

-- many lines omitted --

30 TS dt 0.05 time 1.45
 0 SNES Function norm 5.748198604376e-02
 Linear solve converged due to CONVERGED_ATOL iterations 178
 1 SNES Function norm 1.124343852602e-11
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
31 TS dt 0.05 time 1.5
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output written to the terminal is identical to that from Step 1.
At the end of the output, we see that the simulation advanced the solution 31 time steps.
Remember that the PETSc TS monitor shows the nondimensionalized time and time step values.

Visualizing the results

In Fig. 96 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/subduction-2d directory.
Next, we override the default name of the simulation file with the name of the current simulation.

Listing 150 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_interseismic"

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 2 at t=100 yr. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 96 Solution for Step 2 at t=100 yr.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Step 3: Quasistatic Earthquake Cycle

Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasitatic simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.UniformDB

	pylith.faults.KinSrcConstRate

	pylith.bc.ZeroDB

Simulation parameters

This simulation combines 300 years of interseismic deformation from Step 2 with the coseismic deformation from Step 1 applied at 150 years to create a simple model of an earthquake cycle.
Fig. 97 shows the schematic of the boundary conditions.
The parameters specific to this example are in step03_eqcycle.cfg.

[image:]
Fig. 97 Boundary conditions for a simple earthquake cycle with presribed coseismic slip and creep.
We combine the coseismic slip from Step 1 with the interseismic slip from Step 2.

On the interface along the top of the subducting oceanic crust and the continental crust and mantle we create two earthquake ruptures.
The first rupture applies the coseismic slip from Step 1 at 150 years, while the second rupture prescribes the same steady, aseismic slip as in Step 2.
On the interface between the bottom of the subducting oceanic crust and the mantle, we prescribe the same steady, aseismic slip as that in Step 2.

Listing 151 Prescribed slip parameters for Step 3. We only show the details for the top of the slab.

[pylithapp.problem]
interfaces = [fault_slabtop, fault_slabbot]

[pylithapp.problem.interfaces.fault_slabtop]
label = fault_slabtop
label_value = 21
edge = fault_slabtop_edge
edge_value = 31

observers.observer.data_fields = [slip]

eq_ruptures = [creep, earthquake]

Creep
eq_ruptures.creep = pylith.faults.KinSrcConstRate
eq_ruptures.creep.origin_time = 0.0*year

Earthquake
eq_ruptures.earthquake = pylith.faults.KinSrcStep
eq_ruptures.earthquake.origin_time = 150.0*year

[pylithapp.timedependent.interfaces.fault_slabtop.eq_ruptures.earthquake]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = fault_coseismic.spatialdb
db_auxiliary_field.query_type = linear

[pylithapp.timedependent.interfaces.fault_slabtop.eq_ruptures.creep]
db_auxiliary_field = spatialdata.spatialdb.SimpleDB
db_auxiliary_field.description = Fault rupture auxiliary field spatial database
db_auxiliary_field.iohandler.filename = fault_slabtop_creep.spatialdb
db_auxiliary_field.query_type = linear

Running the simulation

Listing 152 Run Step 3 simulation

$ pylith step03_eqcycle.cfg

The output should look something like the following.
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiopetsc(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(topology::Mesh *)
 -- meshiopetsc(info)
 -- Component 'reader': Domain bounding box:
 (-600000, 600000)
 (-600000, 399.651)

-- many lines omitted --

61 TS dt 0.05 time 3.
 0 SNES Function norm 5.748198604376e-02
 Linear solve converged due to CONVERGED_ATOL iterations 178
 1 SNES Function norm 1.127019123456e-11
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
62 TS dt 0.05 time 3.05
 >> /software/unix/py39-venv/pylith-debug/lib/python3.9/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output written to the terminal is identical to that from Steps 1 and 2.
At the end of the output, we see that the simulation advanced the solution 62 time steps.
Remember that the PETSc TS monitor shows the nondimensionalized time and time step values.

Visualizing the results

In Fig. 98 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/subduction-2d directory.
Next, we override the default name of the simulation file with the name of the current simulation.

Listing 153 Set the simulation in the ParaView Python Shell.

>>> SIM = "step03_eqcycle"

Finally, we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 3 at t=200 yr. The colors indicate the magnitude of the displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 98 Solution for Step 3 at t=200 yr.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Suggested Exercises

	Change the resolution of the mesh by editing the generate_gmsh.py Gmsh Python script or the mesh_tri.jou Cubit journal files. Change the resolution and bias factor.

	Add depth dependent viscosity to the mantle and crust.
This requires using the linear Maxwell plane strain bulk constitutive model in the crust as well and creating spatial databases that include viscosity for the crust.
Specifying a depth dependent variation in the parameters will require adding points, updating num-locs accordingly, and changing data-dim to 1.

	Modify the spatial database files for the material properties to use depth-dependent elastic properties based on PREM (Dziewonski and Anderson, 1981, 10.1016/0031-9201(81)90046-7). See http://ds.iris.edu/ds/products/emc-prem/ for a simple table of values. Add points, update num-locs accordingly, and change data-dim to 1.

	Create a Cubit journal file mesh_quad.jou for generating a mesh with quadrilateral cells instead of triangular cells. This requires using the pave mesh scheme.

Subduction Zone (3D)

The files are in the directory examples/subduction-3d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	cubit_*.jou:

	Files used to construct the finite-element mesh using Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	utils:

	Directory containing Python scripts for pre- and post-processing.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	input:

	Directory for simulation input data that must be downloaded.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

	scratch:

	Directory for temporary files generated by utility scripts.

Overview

This suite of examples demonstrates use of a wide variety of features and the general workflow often used in research simulations.
We base the model on the Cascadia subduction zone (Fig. 99).
These examples focus on modeling the deformation associated with the the subducting slab, including interseismic deformation with aseismic slip (creep) and viscoelastic relaxation, coseismic slip on the slab interface and a splay fault, and slow slip events on the subduction interface.
We account for the 3D material properties associated with different elastic properties for the subducting slab, mantle, continental crust, and accretionary wedge.
To keep the computation time in these examples short, we limit our model to an 800 km \(\times\) 800 km \(\times\) 400 km domain and we use a relatively coarse discretization.
For simplicity and to reduce complexity in constructing the mesh, we use a flat top surface (elevation of 0 with respect to mean sea level).

[image: Cartoon of the Cascadia Subduction Zone showing the subduction of the Juan de Fuca Plate under the North American Plate. Source - [U.S. Geological Survey Fact Sheet 060-00](https://pubs.usgs.gov/fs/2000/fs060-00/)]

Fig. 99 Cartoon of the Cascadia Subduction Zone showing the subduction of the Juan de Fuca Plate under the North American Plate. Source - U.S. Geological Survey Fact Sheet 060-00 [https://pubs.usgs.gov/fs/2000/fs060-00/]

Fig. 100 shows our conceptual model with a slab, mantle, continental crust, and accretionary wedge.
We cut off the slab at a depth of 100 km.
We use a transverse geographic projection coordinate system with Portland, Oregon, as the origin to georeference our model.
To model the motion of the slab, we include a fault for the subduction interface (the interface between the top of the slab and the mantle, crust, and wedge), as well as a fault between the bottom of the slab and the mantle.

[image: Conceptual model based on the Cascadia Subduction Zone. The model includes the subduction slab (white), the mantle (green), continental crust (blue), and an accretionary wedge (red).]

Fig. 100 Conceptual model based on the Cascadia Subduction Zone. The model includes the subduction slab (white), the mantle (green), continental crust (blue), and an accretionary wedge (red).

	Step 1:

	Static axial compression.

	Step 2:

	Quasi-static coseismic and postseismic deformation from an earthquake rupture in the center of the subduction zone interface.

	Step 3:

	Quasi-static interseisic deformation with creep on the top and bottom of the slab.

	Step 4:

	Quasi-static earthquake cycle with prescribed earthquake rupture and creep.

Warning

Steps 5-8 are still being updated for use with PyLith v3.

Danger

These simulations are significantly larger than those for the other suites of examples.
Some of the time-dependent simulations may take 30 minutes or more to run and use up to 4 GB of memory.
We are working to select better preconditioners to improve the solvers and reduce the runtime.

Example Workflow

	Cubit Mesh
	Setup

	Meshing using Journal Scripts

	Visualizing the Mesh

	Common Information

	Step 1: Axial Compression
	Simulation parameters

	Visualizing the results

	Step 2: Earthquake Rupture and Postseismic Relaxation
	Simulation parameters

	Visualizing the results

	Step 3: Interseismic Deformation
	Simulation parameters

	Visualizing the results

	Step 4: Earthquake Cycle with Prescribed Slip
	Simulation parameters

	Visualizing the results

	Suggested Exercises

Cubit Mesh

We use Cubit to generate the finite-element mesh.
Due to its size, we do not include the finite-element mesh in the PyLith source or binary distributions.
See the instructions in the input/README.md file for how to download the mesh.

Setup

We use contours of the Cascadia Subduction Zone from Slab v1.0 [Hayes et al., 2012] for the geometry of the subduction interface.
To make use of these contours from within Cubit, we use a Python script (utils/generate_surfjou.py) to read the contours file and create a Cubit journal file (scratch/cubit_create_surfs.jou) that adds additional contours west of the trench and then constructs the top and bottom surfaces of the slab.
The Python script also constructs a splay fault by copying a contour to a depth below the slab and above the ground surface.

Tip

We define the coordinate systems we use in the simulations in the Python script utils/coordsys.py to make it easier to convert to and from various georeference coordinate systems in the pre- and post-processing.
PyLith will automatically convert among compatible coordinate systems during the simulation.

Listing 154 Generate generate_surfs.jou

Make sure you are in the `subduction-3d` directory and then run the Python
script to generate the journal file `scratch/cubit_create_surfs.jou`.
$./utils/generate_surfjou.py

Meshing using Journal Scripts

The next step is to use Cubit to run the scratch/cubit_create_surfs.jou journal file to generate the spline surfaces for the slab and splay fault and save them as ACIS surfaces.

Important

The Cubit journal files name objects and then later reference them by name.
When objects are cut, a suffix of @LETTER is appended to the original name (for example, domain becomes domain and domain@A).
However, which one retains the original name and which ones gets the suffix is ambiguous.
In general, the names are consistent across versions of Cubit with the same version of the underlying ACIS library.
As a result, you may need to update the ids in the references to previously named objects that have been split (for example domain@A may need to be changed to domain@B, etc) in order to account for differences in how your version of Cubit has named split objects.

Currently we discretize the domain using a uniform, coarse resolution of 25 km.
This allows the simulations to run relatively quickly and fit on a laptop.
In a real research problem, we would tailor the resolution to match the length scales we want to capture and use a finer resolution.
We provide journal files for both a mesh with tetrahedral cells (cubit_tet.jou) and a mesh with hexahedral cells (cubit_hex.jou).
In the following examples, we will focus exclusively on the mesh with tetrahedral cells because the mesh with hexahedral cells contains cells that are significantly distorted; this illustrates how it is often difficult to generate high quality meshes with hexahedral cells for domains with complex 3D geometry.

After you generate the ACIS surface files, run the cubit_tet.jou journal file to construct the geometry, and generate the mesh.
In the end you will have an Exodus-II file mesh_tet.exo, which is a NetCDF file, in the input directory.
You can load this file into ParaView.

Tip

We recommend carefully examining the cubit_geometry.jou journal file to understand how we assemble the 3D slab and cut the rectangular domain into pieces.

Visualizing the Mesh

The Exodus-II file input/mesh_tet.exo can be viewed with ParaView.
We provide the Python script viz/plot_mesh.py to visualize the nodesets and the mesh quality using the condition number metric.
As in our other Python scripts for ParaView (see ParaView Python Scripts for a discussion of how to use Python ParaView scripts), you can override the default parameters by setting appropriate values in the Python shell (if running within the ParaView GUI) or from the command line (if running the script directly outside the GUI).
When viewing the nodesets, the animation controls allow stepping through the nodesets.
When viewing the mesh quality, only the cells with the given quality metric above some threshold (poorer quality) are shown.
The default quality metric is condition number and the default threshold is 2.0.

To visualize the mesh, start ParaView.
Within the ParaView GUI Python shell (Tools\(\rightarrow\)Python Shell), we override the EXODUS_FILE and SHOW_QUALITY parameters.

Listing 155 ParaView Python shell

Import the os module so we can get access to the HOME environment variable.
>>> import os
>>> HOME = os.environ["HOME"]
You may need to adjust the next line, depending on where you installed PyLith.
>>> EXODUS_FILE = os.path.join(HOME,"pylith","examples","subduction-3d","input","mesh_tet.exo")
Turn off display of the mesh quality (show only the nodesets).
>>> SHOW_QUALITY = False

We then click on the Run Script button and navigate to the examples/subduction-3d/viz directory and select plot_mesh.py.

[image: Visualization of the `fault_slabtop` nodeset (yellow dots) for the Exodus-II file `mesh/mesh_tet.exo` using the `viz/plot_mesh.py` ParaView Python script. One can step through the different nodesets using the animation controls. This script can also be use to show the mesh quality.]

Fig. 101 Visualization of the fault_slabtop nodeset (yellow dots) for the Exodus-II file input/mesh_tet.exo using the viz/plot_mesh.py ParaView Python script.
You can step through the different nodesets using the animation controls.
This script can also be use to show the mesh quality.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg, which contains numerous comments, so we only summarize the parameters here.

The settings contained in pylithapp.cfg for this problem consist of:

	pylithapp.metadata Metadata common to all of the simulations in the directory.

	pylithapp.journal.info Parameters that control the verbosity of the output written to stdout for the different components.

	pylithapp.mesh_generator Parameters for importing the finite-element mesh.

	pylithapp.problem Parameters that define the boundary value problem and it solution, such as the type of solver, solution fields, and output over the domain.

	pylithapp.problem.materials Parameters that specify the governing equation and bulk rheologies.

	pylithapp.problem.bc Parameters that specify the boundary conditions.

To make it easier to switch between elastic and viscoelastic bulk rheologies for different simulations, we separate the material parameters relevant to the bulk rheologies into two parameter files: mat_elastic.cfg and mat_viscoelastic.cfg.
We use mat_elastic.cfg when we want all materials to use elastic bulk rheologies.
We use mat_viscoelastic.cfg when we want the mantle and bottom of the slab to use viscoelastic bulk rheologies.
The physical properties for each material are specified in spatial database files.
For example, the elastic properties for the crust are in mat_crust_elastic.spatialdb.
The spatial database files for elastic properties all use just a single point to specify uniform physical properties within each material.

Step 1: Axial Compression

This example involves a static simulation that solves for the deformation from axial compression.
Fig. 102 shows the boundary conditions on the domain.

[image:]
Fig. 102 Boundary conditions for axial compression in the x direction with roller boundary conditions on the -y, +y, and -z boundaries.

Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.SimpleDB

	Static simulation

	

Simulation parameters

The parameters specific to this example are in step01_axialdisp.cfg and include:

	pylithapp.metadata Metadata for this simulation. Even when the author and version are the same for all simulations in a directory, we prefer to keep that metadata in each simulation file as a reminder to keep it up-to-date for each simulation.

	pylithapp Parameters defining where to write the output.

	pylithapp.problem Parameters for the solution field with displacement and Lagrange multiplier subfields.

We override the parameters for the Dirichlet displacement boundary conditions on the -x and +x boundaries.
We replace the ZeroDB spatial database for zero displacement values with a UniformDB to impose axial compression with 2.0 m of displacement on the two boundaries.
For a more efficient solve we use the PETSc default solver options for elasticity in parallel;
for larger simulations these are sometimes more efficient than the defaults for running in serial.

Listing 156 Run Step 1 simulation

$ pylith step01_axialdisp.cfg mat_elastic.cfg

The output should look something like the following.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::ExodusII&, pylith::scalar_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 24824 vertices.
 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio::ExodusII&, pylith::int_array*, pylith::int_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 134381 cells in 4 blocks.

-- many lines omitted --

 >> /src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:94:void pylith::meshio::MeshIO::read(pylith::topology::Mesh*)
 -- meshiocubit(info)
 -- Component 'reader': Domain bounding box:
 (-460000, 340000)
 (-400000, 400000)
 (-400000, 2.91038e-11)

-- many lines omitted --

 >> /src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t&, const char*, const pylith::utils::PetscOptions&)
 -- petscoptions(info)
 -- Setting PETSc options:
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_type = gamg
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/problems/TimeDependent.py:139:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 0.01 time 0.
 0 SNES Function norm 1.122453626786e+01
 Linear solve converged due to CONVERGED_ATOL iterations 17
 1 SNES Function norm 6.926560000115e-11
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
1 TS dt 0.01 time 0.01
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOCubit reader and that it found the domain to extend from -460 km to +340 km in the x direction, from -400 km to +400 km in the y direction, and from -400 km to 0 in the z direction.
The output also includes the scales used for nondimensionalization and the default PETSc options.

At the end of the output written to the terminal, we see that the solver advanced the solution 1 time step (static simulation).
The linear solve converged after 85 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 103 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
We start ParaView from the examples/subduction-3d directory and then run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 1. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 103 Solution for Step 1.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Step 2: Earthquake Rupture and Postseismic Relaxation

This example involves a quasi-static simulation for coseismic earthquake rupture and postseismic relaxation.
We use linear Maxwell viscoelastic bulk rheologies in the mantle and deeper part of the slab.
Fig. 104 shows the boundary conditions on the domain.

[image:]
Fig. 104 Boundary conditions for quasi-static coseismic slip on the subduction interface and postseismic relaxation.
We prescribe uniform oblique slip in the center of the subduction interfaces with roller boundary conditions on the lateral sides and bottom of the domain.

Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcStep

Simulation parameters

The parameters specific to this example are in step02_coseismic.cfg and include:

	pylithapp.metadata Metadata for this simulation. Even when the author and version are the same for all simulations in a directory, we prefer to keep that metadata in each simulation file as a reminder to keep it up-to-date for each simulation.

	pylithapp Parameters defining where to write the output.

	pylithapp.problem Parameters for the solution field with displacement and Lagrange multiplier subfields.

	pylithapp.interfaces Parameters for the earthquake rupture.

We define the duration of the simulation to be 200 years with an initial time step of 10 years.
Using the default time stepping algorithm (backward Euler), the time step will remain uniform.
Some of the other algorithms adapt the time step to the solution.

For the fault slip, we use the nodesets for the fault and its buried edges corresponding to the central patch of the top of the slab.
We set the initiation time to 10 years with the default step time function for the earthquake rupture.
We could have also set the origin_time of the earthquake rupture to 10 years and used an initiation_time of 0 years.
We impose oblique slip with 1.0 m of right-lateral slip and 4.0 m of reverse slip.

Listing 157 Run Step 2 simulation

$ pylith step02_coseismic.cfg mat_viscoelastic.cfg

The output should look something like the following.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::ExodusII&,
pylith::scalar_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 24824 vertices.
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio::ExodusII&, pyl
ith::int_array*, pylith::int_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 134381 cells in 4 blocks.

-- many lines omitted --

 >> /pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t&, const char*, const pylith::utils::PetscOptions&)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_mg_levels_ksp_type = richardson
fieldsplit_displacement_mg_levels_pc_type = sor
fieldsplit_displacement_pc_type = gamg
fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_mg_levels_ksp_type = richardson
fieldsplit_lagrange_multiplier_fault_mg_levels_pc_type = sor
fieldsplit_lagrange_multiplier_fault_pc_type = gamg
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0
pc_fieldsplit_type = schur
pc_type = fieldsplit
pc_use_amat = true
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

-- many lines omitted --

20 TS dt 0.1 time 1.9
 0 SNES Function norm 2.013038975343e-02
 Linear solve converged due to CONVERGED_ATOL iterations 50
 1 SNES Function norm 3.127115384896e-10
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
21 TS dt 0.1 time 2.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOCubit reader.
We also see the PETSc solver options, which show use of the Schur preconditioner and GAMG (algebriac multigrid) for the displacement and fault Lagrange multiplier solution subfields.

At the end of the output written to the terminal, we see that the solver advanced the solution 21 time steps.
The linear solve converged after 50 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 105 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
We start ParaView from the examples/subduction-3d directory and then run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 2. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 105 Solution for Step 2.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Step 3: Interseismic Deformation

This example involves a quasi-static simulation for interseismic deformation.
We prescribe aseismic slip (creep) on the bottom of the slab and the deeper portion of the top of the slab; the shallow portion of the top of the slab remains locked.
We use linear Maxwell viscoelastic bulk rheologies in the mantle and deeper part of the slab.
Fig. 106 shows the boundary conditions on the domain.

[image:]
Fig. 106 Boundary conditions for quasi-static interseismic deformation.
We prescribe aseismic slip (creep) on the bottom of the slab and the deeper portion of the top of the slab; the shallow portion of the top of the slab remains locked.

Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcConstRate

Simulation parameters

The parameters specific to this example are in step03_interseismic.cfg and include:

	pylithapp.metadata Metadata for this simulation. Even when the author and version are the same for all simulations in a directory, we prefer to keep that metadata in each simulation file as a reminder to keep it up-to-date for each simulation.

	pylithapp Parameters defining where to write the output.

	pylithapp.problem Parameters for the solution field with displacement and Lagrange multiplier subfields.

	pylithapp.interfaces Parameters for the aseismic slip (creep) on the top and bottom of the slab.

For aseismic slip we use the KinSrcConstRate kinematic source to prescribe a constant slip rate.
We also adjust the nodesets used for the boundary conditions to remove overlap with the slab to allow the slab to move independently.

Listing 158 Run Step 3 simulation

$ pylith step03_interseismic.cfg mat_viscoelastic.cfg

The output should look something like the following.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::ExodusII&,
pylith::scalar_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 24824 vertices.
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio::ExodusII&, pyl
ith::int_array*, pylith::int_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 134381 cells in 4 blocks.

-- many lines omitted --

 >> /pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t&, const char*, const pylith::utils::PetscOptions&)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_mg_levels_ksp_type = richardson
fieldsplit_displacement_mg_levels_pc_type = sor
fieldsplit_displacement_pc_type = gamg
fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_mg_levels_ksp_type = richardson
fieldsplit_lagrange_multiplier_fault_mg_levels_pc_type = sor
fieldsplit_lagrange_multiplier_fault_pc_type = gamg
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0
pc_fieldsplit_type = schur
pc_type = fieldsplit
pc_use_amat = true
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

-- many lines omitted --

20 TS dt 0.1 time 1.9
 0 SNES Function norm 8.195918512189e+00
 Linear solve converged due to CONVERGED_ATOL iterations 385
 1 SNES Function norm 3.709628561436e-10
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
21 TS dt 0.1 time 2.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output is near the same as in Step 2.
The simulation advances 21 time steps.
The linear solve converged after 385 iterations and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
In this simulation the fault interfaces on the top and bottom of the slab occupy a significant fraction of the domain.
As a result, the linear solver requires many more iterations to converge compared to the limited fault interface in Step 2.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 107 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
We start ParaView from the examples/subduction-3d directory and then run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 3. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 107 Solution for Step 3.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Step 4: Earthquake Cycle with Prescribed Slip

This example combines the interseismic deformation from Step 3 and expands on the earthquake ruptures from Step 2.
We expand the earthquake ruptures to span the entire along strike length of the top of the slab and also consider earthquake rupture on the splay fault.
We use linear Maxwell viscoelastic bulk rheologies in the mantle and deeper part of the slab.
Fig. 108 shows the boundary conditions on the domain.

[image:]
Fig. 108 Boundary conditions for quasi-static interseismic deformation.
We prescribe aseismic slip (creep) on the bottom of the slab and the deeper portion of the top of the slab; the shallow portion of the top of the slab remains locked.

Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcConstRate

Simulation parameters

The parameters specific to this example are in step04_eqcycle.cfg and include:

	pylithapp.metadata Metadata for this simulation. Even when the author and version are the same for all simulations in a directory, we prefer to keep that metadata in each simulation file as a reminder to keep it up-to-date for each simulation.

	pylithapp Parameters defining where to write the output.

	pylithapp.problem Parameters for the solution field with displacement and Lagrange multiplier subfields.

	pylithapp.interfaces Parameters for the earthquake ruptures and aseismic slip (creep) on the top and bottom of the slab.

We extend the duration of the simulation to 300 years.
We impose two earthquake ruptures on slab interface at t=100 and t=200 years and one earthquake rupture on the splay fault at t=250 years.
Now that we have both earthquake rupture and aseismic creep on the top of the slab, we use SimpleDB spatial databases to give depth-dependent, complementary slip.
We impose uniform slip on the splay fault using a UniformDB.
As in Step 3 we also adjust the nodesets used for the boundary conditions to remove overlap with the slab to allow the slab to move independently.

Listing 159 Run Step 4 simulation

$ pylith step04_eqcycle.cfg mat_viscoelastic.cfg

The output should look something like the following.
 >> /software/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:157:void pylith::meshio::MeshIOCubit::_readVertices(pylith::meshio::ExodusII&,
pylith::scalar_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 24824 vertices.
 >> /pylith/libsrc/pylith/meshio/MeshIOCubit.cc:217:void pylith::meshio::MeshIOCubit::_readCells(pylith::meshio::ExodusII&, pyl
ith::int_array*, pylith::int_array*, int*, int*) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 134381 cells in 4 blocks.

-- many lines omitted --

 >> /pylith/libsrc/pylith/utils/PetscOptions.cc:235:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t&, const char*, const pylith::utils::PetscOptions&)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_ksp_type = preonly
fieldsplit_displacement_mg_levels_ksp_type = richardson
fieldsplit_displacement_mg_levels_pc_type = sor
fieldsplit_displacement_pc_type = gamg
fieldsplit_lagrange_multiplier_fault_ksp_type = preonly
fieldsplit_lagrange_multiplier_fault_mg_levels_ksp_type = richardson
fieldsplit_lagrange_multiplier_fault_mg_levels_pc_type = sor
fieldsplit_lagrange_multiplier_fault_pc_type = gamg
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_rtol = 1.0e-12
pc_fieldsplit_schur_factorization_type = lower
pc_fieldsplit_schur_precondition = selfp
pc_fieldsplit_schur_scale = 1.0
pc_fieldsplit_type = schur
pc_type = fieldsplit
pc_use_amat = true
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

-- many lines omitted --

30 TS dt 0.1 time 2.9
 0 SNES Function norm 8.197330252849e+00
 Linear solve converged due to CONVERGED_ATOL iterations 416
 1 SNES Function norm 4.780619312733e-10
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
31 TS dt 0.1 time 3.
 >> /software/baagaard/py38-venv/pylith-opt/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
 -- timedependent(info)
 -- Finalizing problem.

The beginning of the output is near the same as in Steps 2 and 3.
The simulation advances 31 time steps.
As in Step 3 each linear solve requires about 400 iterations to converge.

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 109 we use ParaView to visualize the x displacement field using the viz/plot_dispwarp.py Python script.
We start ParaView from the examples/subduction-3d directory and then run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 4. The colors indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.]

Fig. 109 Solution for Step 4.
The colors of the shaded surface indicate the magnitude of the x displacement, and the deformation is exaggerated by a factor of 1000.

Suggested Exercises

	Change the elastic bulk rheology properties to be depth dependent.

	Add spatial variation to the slip distribution in Step 2.

	Change the distribution of aseismic slip (creep) in Steps 3 and 4.

	Change the distribution of slow slip in Step 6 and the GPS stations used in Steps 6 and 7.

	Optimize the depth variation of the initial stresses in Step 8a to minimize the deformation.

2D Magma Reservoir Using Poroelasticity

The files are in the directory examples/magma-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	*.jou:

	Files used to construct the finite-element mesh using Cubit.

	*.exo:

	Exodus II finite-element mesh files generated by Cubit.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Overview

This example demonstrates the use of poroelasticity to model magma flow in a conduit and reservoir in the crust.

	Step 1:

	Magma influx with displacement and pressure boundary conditions.

	Step 2:

	Same as Step 1 with evolution of porosity state variable.

[image: Diagram of geometry for magma reservoir.]
Fig. 110 Diagram of geometry for magma reservoir.
The domain extends from 0 km to +20 km in the x direction and from -20 km to 0 km in the y direction.
We refer to the domain boundaries using the names shown in the diagram.

Example Workflow

	Cubit Mesh
	Geometry

	Meshing using Journal Scripts

	Common Information
	Metadata, Mesh, and Output

	Physics

	Step 1: Magma inflation
	Simulation parameters

	Running the simulation

	Visualizing the results

	Step 2: Magma inflation with evolution of porosity
	Simulation parameters

	Running the simulation

	Visualizing the results

	Suggested Exercises

Cubit Mesh

Geometry

We construct the geometry for the vertical cross section using 2D primitives available in Cubit.

TODO

Add diagram of Cubit geometry, labeling entities with names used in the Journal files.

Meshing using Journal Scripts

We use Cubit journal files mesh_tri.jou and mesh_quad.jou to generate triangular and quadrilateral meshes, respectively.
Both of these journal files make use of the geometry.jou and createbc.jou files for creating the geometry and tagging boundary conditions.
We use the Cubit graphical user interface to play the Journal files.

Important

We use IDless journaling in CUBIT.
This allows us to reference objects in a manner that should be independent of the version of CUBIT that is being used.
In the journal files, the original command used is typically commented out, and the following command is the equivalent IDless command.

Once you have run either the mesh_tri.jou or mesh_quad.jou journal file to construct the geometry and generate the mesh, you will have a corresponding Exodus-II file (mesh_tri.exo or mesh_quad.exo).
These are NetCDF files, and they can be loaded into ParaView.
This can be done by either running ParaView and loading the file, or using the script provided in the viz directory.
For example, if ParaView is in your path, you can run the
following command:

Listing 160 Start paraview and run the viz/plot_mesh.py Python script to view the mesh with triangular cells.

paraview --script=viz/plot_mesh.py

[image: Finite-element mesh with quadrilateral cells generated by Cubit.]

Fig. 111 Finite-element mesh with quadrilateral cells generated by Cubit.

Common Information

In addition to the finite-element mesh, PyLith requires files to specify the simulation parameters.
We specify parameters common to all simulations in a directory in pylithapp.cfg.
The pylithapp.cfg file contains numerous comments, so we only summarize the parameters here.

Metadata, Mesh, and Output

The pylithapp.metadata section specifies metadata common to all simulations in the directory.
We control the verbosity of the output written to stdout using journal.info.
We set the parameters for importing the finite-element mesh in pylithapp.mesh_generator.

Physics

These quasi-static simulations solve the poroelasticity equation, so we have a solution field with displacement, pressure, and volumetric strain subfields.

(178)\[\begin{gather}
\vec{s} = \left(\vec{u} \quad p \quad \epsilon_v\right)^T, \\
\nabla \cdot \boldsymbol{\sigma}(\vec{u},p) = \vec{0}, \\
\frac{\partial \zeta(\vec{u},p)}{\partial t} + \nabla \cdot \vec{q}(p) = 0, \\
\nabla \cdot \vec{u} - \epsilon_{v} = 0.
\end{gather}\]

We specify a basis order of 2 for the displacement subfield, and 1 for each of the remaining subfields.
We also adjust the scales for nondimensionalization.

Listing 161 Solution and nondimensionalization parameters for magma-2d examples.

[pylithapp.problem]
solution = pylith.problems.SolnDispPresTracStrain
defaults.quadrature_order = 2

[pylithapp.problem.solution.subfields]
displacement.basis_order = 2
pressure.basis_order = 1
trace_strain.basis_order = 1

[pylithapp.problem]
normalizer = spatialdata.units.NondimElasticQuasistatic
normalizer.length_scale = 100.0*m
normalizer.relaxation_time = 0.2*year
normalizer.shear_modulus = 10.0*GPa

We use the material properties in all of the simulations in this directory, so we specify them in pylithapp.cfg to avoid repeating the information in the file with parameters for each simulation.
We create an array of 2 materials; with uniform material properties we use UniformDB spatial databases and set the basis order of the auxiliary subfields to 0.

Listing 162 Material parameters for the magma-2d examples.

[pylithapp.problem]
We have two different poroelastic materials each with a linear bulk rheology.
materials = [crust, intrusion]
materials.crust = pylith.materials.Poroelasticity
materials.intrusion = pylith.materials.Poroelasticity

[pylithapp.problem.materials]
crust.bulk_rheology = pylith.materials.IsotropicLinearPoroelasticity
intrusion.bulk_rheology = pylith.materials.IsotropicLinearPoroelasticity

[pylithapp.problem.materials.crust]

`label_value` must match the blocks in `bc.jou` Cubit Journal file.
description = crust
label_value = 1

We will use uniform material properties, so we use the UniformDB
spatial database.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Poroelastic properties for the crust
db_auxiliary_field.values = [solid_density, fluid_density, fluid_viscosity, porosity, shear_modulus, drained_bulk_modulus, biot_coefficient, fluid_bulk_modulus, solid_bulk_modulus, isotropic_permeability]
db_auxiliary_field.data = [2500*kg/m**3, 1000*kg/m**3, 0.001*Pa*s, 0.01, 6.0*GPa, 10.0*GPa, 1.0, 2.0*GPa, 20.0*GPa, 1e-15*m**2]

Set basis order to 0 for uniform properties and a basis order of 1 for Cauchy stress and strain.
auxiliary_subfields.body_force.basis_order = 0
auxiliary_subfields.solid_density.basis_order = 0
auxiliary_subfields.fluid_density.basis_order = 0
auxiliary_subfields.fluid_viscosity.basis_order = 0
auxiliary_subfields.gravitational_acceleration.basis_order = 0
auxiliary_subfields.porosity.basis_order = 0
derived_subfields.cauchy_strain.basis_order = 1
derived_subfields.cauchy_stress.basis_order = 1

[pylithapp.problem.materials.crust.bulk_rheology]
auxiliary_subfields.drained_bulk_modulus.basis_order = 0
auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.biot_coefficient.basis_order = 0
auxiliary_subfields.biot_modulus.basis_order = 0
auxiliary_subfields.isotropic_permeability.basis_order = 0

[pylithapp.problem.materials.intrusion]
`label_value` must match the blocks in `bc.jou` Cubit Journal file.
description = Intrusion
label_value = 2

We will use uniform material properties, so we use the UniformDB
spatial database.
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Poroelastic properties
db_auxiliary_field.values = [solid_density, fluid_density, fluid_viscosity, porosity, shear_modulus, drained_bulk_modulus, biot_coefficient, fluid_bulk_modulus, solid_bulk_modulus, isotropic_permeability]
db_auxiliary_field.data = [2500*kg/m**3, 1000*kg/m**3, 0.001*Pa*s, 0.1, 6.0*GPa, 10.0*GPa, 0.8, 2.0*GPa, 20.0*GPa, 1e-13*m**2]

auxiliary_subfields.body_force.basis_order = 0
auxiliary_subfields.solid_density.basis_order = 0
auxiliary_subfields.fluid_density.basis_order = 0
auxiliary_subfields.fluid_viscosity.basis_order = 0
auxiliary_subfields.gravitational_acceleration.basis_order = 0
auxiliary_subfields.porosity.basis_order = 0
derived_subfields.cauchy_strain.basis_order = 1
derived_subfields.cauchy_stress.basis_order = 1

[pylithapp.problem.materials.intrusion.bulk_rheology]
Set basis order to 0 for uniform properties
auxiliary_subfields.drained_bulk_modulus.basis_order = 0
auxiliary_subfields.shear_modulus.basis_order = 0
auxiliary_subfields.biot_coefficient.basis_order = 0
auxiliary_subfields.biot_modulus.basis_order = 0
auxiliary_subfields.isotropic_permeability.basis_order = 0

Step 1: Magma inflation

Features

	Quasi-static problem

	LU preconditioner

	pylith.materials.Poroelasticity

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.problems.SolnDispPresTracStrain

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	pylith.meshio.DataWriterHDF5

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.UniformDB

Simulation parameters

This example uses poroelasticity to model flow of magma up through a conduit and into a magma reservoir.
The magma reservoir and conduit have a higher permeability than the surrounding crust.
We generate flow by imposing a pressure on the external boundary of the conduit that is higher than the uniform initial pressure in the domain.
Fig. 112 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_inflation.cfg.

[image:]
Fig. 112 Boundary and initial conditions for magma inflation.
We apply roller boundary conditions on the +x, -x, and -y boundaries.
We impose zero pressure (undrained conditions) on the +y boundary and a pressure on the external boundary of the conduit to generate fluid flow.

Listing 163 Time stepping parameters for Step 1.

[pylithapp.timedependent]
start_time = -0.2*year
initial_dt = 0.2*year
end_time = 10.0*year

Listing 164 Initial condition parameters for Step 1. We impose an initial fluid pressure of 5 MPa over the entire domain.

[pylithapp.problem]
ic = [domain]
ic.domain = pylith.problems.InitialConditionDomain

[pylithapp.problem.ic.domain]
db = spatialdata.spatialdb.UniformDB
db.description = Initial conditions for domain
db.values = [displacement_x, displacement_y, pressure, trace_strain]
db.data = [0.0*m, 0.0*m, 5.0*MPa, 0.0]

We create an array of 5 Dirichlet boundary conditions: 3 for displacement and 2 for fluid pressure.
We have zero displacement perpendicular to the -x, +x, and -y boundaries, zero pressure on the +y boundary, and 10 MPa of fluid pressure on the external boundary of the conduit.

Listing 165 Dirichlet boundary conditions for Step 1.

[pylithapp.problem]
bc = [bc_xneg, bc_xpos, bc_yneg, bc_ypos, bc_flow]

bc.bc_xneg = pylith.bc.DirichletTimeDependent
bc.bc_xpos = pylith.bc.DirichletTimeDependent
bc.bc_yneg = pylith.bc.DirichletTimeDependent
bc.bc_ypos = pylith.bc.DirichletTimeDependent
bc.bc_flow = pylith.bc.DirichletTimeDependent

[pylithapp.problem.bc.bc_xneg]
constrained_dof = [0]
label = boundary_xneg
field = displacement
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC -x

[pylithapp.problem.bc.bc_xpos]
constrained_dof = [0]
label = boundary_xpos
field = displacement
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC +x

[pylithapp.problem.bc.bc_yneg]
constrained_dof = [1]
label = boundary_yneg
field = displacement
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC -y

[pylithapp.problem.bc.bc_ypos]
constrained_dof = [0]
label = boundary_ypos
field = pressure
db_auxiliary_field = pylith.bc.ZeroDB
db_auxiliary_field.description = Dirichlet BC +z

[pylithapp.problem.bc.bc_flow]
constrained_dof = [0]
label = boundary_flow
field = pressure
db_auxiliary_field = spatialdata.spatialdb.UniformDB
db_auxiliary_field.description = Flow into external boundary of conduit
db_auxiliary_field.values = [initial_amplitude]
db_auxiliary_field.data = [10.0*MPa]

Running the simulation

Listing 166 Run Step 1 simulation

$ pylith step01_inflation.cfg

The output should look something like the following.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/apps/PyLithApp.py:77:main
 -- pylithapp(info)
 -- Running on 1 process(es).
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/meshio/MeshIOObj.py:38:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:148:void pylith::meshio::MeshIOCubit::_readVertices(ExodusII &, scalar_array *, int *, int *) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 747 vertices.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:208:void pylith::meshio::MeshIOCubit::_readCells(ExodusII &, int_array *, int_array *, int *, int *) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 705 cells in 2 blocks.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:270:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Found 5 node sets.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:296:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_xneg' with id 20 containing 21 nodes.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:296:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_xpos' with id 21 containing 21 nodes.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:296:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_yneg' with id 22 containing 23 nodes.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:296:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_ypos' with id 23 containing 21 nodes.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:296:void pylith::meshio::MeshIOCubit::_readGroups(ExodusII &)
 -- meshiocubit(info)
 -- Component 'reader': Reading node set 'boundary_flow' with id 24 containing 3 nodes.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIO.cc:85:void pylith::meshio::MeshIO::read(pylith::topology::Mesh *, const bool)
 -- meshiocubit(info)
 -- Component 'reader': Domain bounding box:
 (0, 20000)
 (-20000, 0)
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:116:preinitialize
 -- timedependent(info)
 -- Performing minimal initialization before verifying configuration.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Solution.py:39:preinitialize
 -- solution(info)
 -- Performing minimal initialization of solution.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:174:verifyConfiguration
 -- timedependent(info)
 -- Verifying compatibility of problem configuration.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:219:_printInfo
 -- timedependent(info)
 -- Scales for nondimensionalization:
 Length scale: 100*m
 Time scale: 6.31152e+06*s
 Pressure scale: 1e+10*m**-1*kg*s**-2
 Density scale: 3.98353e+19*m**-3*kg
 Temperature scale: 1*K
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:185:initialize
 -- timedependent(info)
 -- Initializing timedependent problem with quasistatic formulation.
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/utils/PetscOptions.cc:239:static void pylith::utils::_PetscOptions::write(pythia::journal::info_t &, const char *, const PetscOptions &)
 -- petscoptions(info)
 -- Setting PETSc options:
fieldsplit_displacement_pc_type = lu
fieldsplit_pressure_pc_type = ilu
fieldsplit_trace_strain_pc_type = ilu
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_guess_pod_size = 8
ksp_guess_type = pod
ksp_rtol = 1.0e-12
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
pc_fieldsplit_type = multiplicative
pc_type = fieldsplit
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/TimeDependent.py:132:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 1. time -1.
 0 SNES Function norm 7.519828144445e-01
 Linear solve converged due to CONVERGED_ATOL iterations 35
 1 SNES Function norm 3.553087718548e-11
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1

-- many lines omitted --

50 TS dt 1. time 49.
 0 SNES Function norm 3.049429648347e-03
 Linear solve converged due to CONVERGED_ATOL iterations 5
 1 SNES Function norm 4.921699643384e-11
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
51 TS dt 1. time 50.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:199:finalize
 -- timedependent(info)
 -- Finalizing problem.

At the beginning of the output written to the terminal, we see that PyLith is reading the mesh using the MeshIOCubit reader and that it found the domain to extend from 0 to 20 km in the x direction and from -20 km to 0 in the y direction.
The scales for nondimensionalization .
PyLith detects the use of poroelasticity without a fault and selects appropriate preconditioning options as discussed in PETSc Options.

At the end of the output written to the terminal, we see that the solver advanced the solution 51 time steps.
At each time step, the linear converges in about 35 or less iteration and the norm of the residual met the absolute convergence tolerance (ksp_atol) .
The nonlinear solve converged in 1 iteration, which we expect because this is a linear problem, and the residual met the absolute convergence tolerance (snes_atol).

Visualizing the results

The output directory contains the simulation output.
Each “observer” writes its own set of files, so the solution over the domain is in one set of files, the boundary condition information is in another set of files, and the material information is in yet another set of files.
The HDF5 (.h5) files contain the mesh geometry and topology information along with the solution fields.
The Xdmf (.xmf) files contain metadata that allow visualization tools like ParaView to know where to find the information in the HDF5 files.
To visualize the data using ParaView or Visit, load the Xdmf files.

In Fig. 113 we use ParaView to visualize the y displacement field using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/magma-2d directory.

Listing 167 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.
For Step 1 we do not need to change any of the default values.

[image: Solution for Step 1 at t=100 yr. The colors indicate the fluid pressure, and the deformation is exaggerated by a factor of 1000.]

Fig. 113 Solution for Step 1 at t=100 yr.
The colors of the shaded surface indicate the fluid pressure, and the deformation is exaggerated by a factor of 1000.

Step 2: Magma inflation with evolution of porosity

New in v4.0.0

Features

	Quasi-static problem

	LU preconditioner

	pylith.materials.Poroelasticity

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.problems.SolnDispPresTracStrain

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	pylith.meshio.DataWriterHDF5

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.UniformDB

	Poroelasticity with porosity state variable

	Isotropic linear poroelasticity with reference state

Simulation parameters

We extend the simulation in Step 1 by including evolution of the porosity, which depends on the time derivative of the pressure and trace strain.
We also compute the deformation relative to a uniform reference compressive pressure of 5 MPa to illustrate how to use a reference state with poroelasticity.
We use the same initial conditions and boundary conditions as in Step 1.

Because the evolution of porosity depends on the time derivative of the solution subfields, we need to include the time derivatives in the solution field.
As a result, we have 6 subfields in our solution field.

Listing 168 Solution subfields for Step 2.

Poroelasticity with porosity state variable requires solution with time derivatives
solution = pylith.problems.SolnDispPresTracStrainVelPdotTdot

Set basis order for all solution subfields
[pylithapp.problem.solution.subfields]
displacement.basis_order = 2
pressure.basis_order = 1
trace_strain.basis_order = 1
velocity.basis_order = 2
pressure_t.basis_order = 1
trace_strain_t.basis_order = 1

Listing 169 Material parameters for poroelasticity with state variables and reference state for Step 2.

[pylithapp.problem.materials.crust]
use_state_variables = True

db_auxiliary_field.values = [
 solid_density, fluid_density, fluid_viscosity, porosity, shear_modulus, drained_bulk_modulus, biot_coefficient, fluid_bulk_modulus, solid_bulk_modulus, isotropic_permeability,
 reference_stress_xx, reference_stress_yy, reference_stress_zz, reference_stress_xy,
 reference_strain_xx, reference_strain_yy, reference_strain_zz, reference_strain_xy
]
db_auxiliary_field.data = [
 2500*kg/m**3, 1000*kg/m**3, 0.001*Pa*s, 0.01, 6.0*GPa, 10.0*GPa, 1.0, 2.0*GPa, 20.0*GPa, 1e-15*m**2,
 -5.0*MPa, -5.0*MPa, -5.0*MPa, 0.0*MPa,
 0.0, 0.0, 0.0, 0.0
]

auxiliary_subfields.porosity.basis_order = 1

[pylithapp.problem.materials.crust.bulk_rheology]
use_reference_state = True

[pylithapp.problem.materials.intrusion]
use_state_variables = True

db_auxiliary_field.values = [
 solid_density, fluid_density, fluid_viscosity, porosity, shear_modulus, drained_bulk_modulus, biot_coefficient, fluid_bulk_modulus, solid_bulk_modulus, isotropic_permeability,
 reference_stress_xx, reference_stress_yy, reference_stress_zz, reference_stress_xy,
 reference_strain_xx, reference_strain_yy, reference_strain_zz, reference_strain_xy
]
db_auxiliary_field.data = [
 2500*kg/m**3, 1000*kg/m**3, 0.001*Pa*s, 0.1, 6.0*GPa, 10.0*GPa, 0.8, 2.0*GPa, 20.0*GPa, 1e-13*m**2,
 -5.0*MPa, -5.0*MPa, -5.0*MPa, 0.0*Pa,
 0.0, 0.0, 0.0, 0.0
]

auxiliary_subfields.porosity.basis_order = 1

[pylithapp.problem.materials.intrusion.bulk_rheology]
use_reference_state = True

The changes in the physics as well as the default solver settings that impact the initial guess leads to a large initial residual at the second time step.
Consequently, we increase the divergence tolerance for the linear solver.

Listing 170 Adjustment of the divergence tolerance for the linear solver for Step 2.

[pylithapp.petsc]
Increase divergence tolerance. Initial guess at second time step is not accurate.
ksp_divtol = 1.0e+5

Running the simulation

Listing 171 Run Step 2 simulation

$ pylith step02_inflation.cfg

The output should look something like the following.

 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/apps/PyLithApp.py:84:main
 -- pylithapp(info)
 -- Running on 1 process(es).
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/meshio/MeshIOObj.py:43:read
 -- meshiocubit(info)
 -- Reading finite-element mesh
 >> /home/pylith-user/src/cig/pylith/libsrc/pylith/meshio/MeshIOCubit.cc:156:void pylith::meshio::MeshIOCubit::_readVertices(ExodusII &, scalar_array *, int *, int *) const
 -- meshiocubit(info)
 -- Component 'reader': Reading 747 vertices.

-- many lines omitted --

 -- Setting PETSc options:
fieldsplit_displacement_pc_type = lu
fieldsplit_pressure_pc_type = ilu
fieldsplit_pressure_t_pc_type = ilu
fieldsplit_trace_strain_pc_type = ilu
fieldsplit_trace_strain_t_pc_type = ilu
fieldsplit_velocity_pc_type = ilu
ksp_atol = 1.0e-12
ksp_converged_reason = true
ksp_error_if_not_converged = true
ksp_guess_pod_size = 8
ksp_guess_type = pod
ksp_rtol = 1.0e-12
pc_fieldsplit_0_fields = 2
pc_fieldsplit_1_fields = 1
pc_fieldsplit_2_fields = 0
pc_fieldsplit_3_fields = 3
pc_fieldsplit_4_fields = 4
pc_fieldsplit_5_fields = 5
pc_fieldsplit_type = multiplicative
pc_type = fieldsplit
snes_atol = 1.0e-9
snes_converged_reason = true
snes_error_if_not_converged = true
snes_monitor = true
snes_rtol = 1.0e-12
ts_error_if_step_fails = true
ts_monitor = true
ts_type = beuler

 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/TimeDependent.py:132:run
 -- timedependent(info)
 -- Solving problem.
0 TS dt 1. time -1.
 0 SNES Function norm 7.521665654021e-01
 Linear solve converged due to CONVERGED_RTOL iterations 42
 1 SNES Function norm 1.098964504117e-10
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1

-- many lines omitted --

50 TS dt 1. time 49.
 0 SNES Function norm 1.583815770370e-01
 Linear solve converged due to CONVERGED_ATOL iterations 10
 1 SNES Function norm 7.897032897534e-12
 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
51 TS dt 1. time 50.
 >> /home/pylith-user/software/unix/py310-venv/pylith-debug/lib/python3.10/site-packages/pylith/problems/Problem.py:199:finalize
 -- timedependent(info)
 -- Finalizing problem.

The linear solver exhibits similar performance with less than 50 iterations at most time steps.
Furthermore, the problem is still linear, so the nonlinear solver converges in one iteration.

Visualizing the results

In Fig. 114 we use ParaView to visualize the evolution of the y displacement component using the viz/plot_dispwarp.py Python script.
First, we start ParaView from the examples/magma-2d directory.

Listing 172 Open ParaView using the command line.

$ PATH_TO_PARAVIEW/paraview

For macOS, it will be something like
$ /Applications/ParaView-5.10.1.app/Contents/MacOS/paraview

Next, we override the default name of the simulation file with the name of the current simulation.

Listing 173 Set the simulation in the ParaView Python Shell.

>>> SIM = "step02_inflation_statevars"

Next we run the viz/plot_dispwarp.py Python script as described in ParaView Python Scripts.

[image: Solution for Step 2 at t=100 yr. The colors indicate the fluid pressure, and the deformation is exaggerated by a factor of 1000.]

Fig. 114 Solution for Step 2 at t=100 yr.
The colors of the shaded surface indicate the fluid pressure, and the deformation is exaggerated by a factor of 1000.
The reference state gives rise to greater vertical deformation compared to Step 1.
The choice of material properties does not lead to significant changes in porosity in either material during the simulation (not shown in the figure).

Suggested Exercises

	Change the material properties. How do the changes affect the fluid flow?

	Add time-dependence to the pressure (Neumann) boundary condition.

	Create a Gmsh Python script to generate the mesh.

Troubleshooting (2D)

This set of examples demonstrations how to troubleshoot PyLith simulations.
We consider Steps 1 and 6 from examples/reverse-2d and introduce errors into the parameter files and spatial databases.
We illustrate how to dissect a variety of error messages, strategies for diagnosing errors, and the resolution.

The files are in the directory examples/troubleshooting-2d.
The files and directories for this set of examples includes:

	README.md:

	README file containing a brief description of the various examples.

	*.cfg:

	PyLith parameter files.

	*.msh:

	Gmsh finite-element mesh files generated by Gmsh.

	*.spatialdb:

	Spatial database filesFiles associated with the spatial databases.

	viz:

	Directory containing ParaView Python scripts and other files for visualizing results.

	output:

	Directory containing simulation output. It is created automatically when running the simulations.

Example Workflow

	Error Messages
	Configuration Errors

	Runtime Errors

	Step 1: Gravitational Body Forces

	Step 1: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 1: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Slip on Two Faults

	Step 6: Error 1
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 2
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 3
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 4
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 5
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 6
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 7
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 8
	Error Message

	Troubleshooting Strategy

	Resolution

	Step 6: Error 9
	Error Message

	Troubleshooting Strategy

	Resolution

Error Messages

Summary of error messages addressed in this set of examples.

Configuration Errors

Listing 174 See Step 1, Error 1.

ValueError: No constrained degrees of freedom found for time-dependent Dirichlet boundary condition 'bc_xpos'.
'constrained_dof' must be a zero-based integer array (0=x, 1=y, 2=z).

Listing 175 See Step 1, Error 2.

>> {default}::
-- pyre.inventory(error)
-- timedependent.problem_defaults.name <- ''
-- Missing required property 'name' in default options for problem.

Listing 176 See Step 1, Error 3.

>> ./pylithapp.cfg:133:
-- pyre.inventory(error)
-- pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus.basis_order <- '0'
-- unknown component 'pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus'

Listing 177 See Step 1, Error 4.

RuntimeError: Material label_value '3' for cell '3009' does not match the label_value of any materials or interfaces.

Listing 178 See Step 6, Error 1.

>> {default}::
-- pyre.inventory(error)
-- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.description <- ''
-- Description for spatial database not specified.

Listing 179 See Step 6, Error 2.

>> {default}::
-- pyre.inventory(error)
-- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.simpleioascii.filename <- ''
-- Filename for spatial database not specified.

Listing 180 See Step 6, Error 3.

RuntimeError: Cannot find 'lagrange_multiplier_fault' subfield in solution field for fault implementation in component 'splay'.

Runtime Errors

Listing 181 See Step 1, Error 5.

[0]PETSC ERROR: Error converting spatial database values for gravitational_acceleration at (-96623.5 -72650.4) in
spatial database 'Gravity field'. Found near zero magnitude (0) for gravity field vector (0 0).

Listing 182 See Step 6, Error 4.

RuntimeError: Error occurred while reading spatial database file 'fault_slip.spatialdb'.
Read data for 3 out of 4 points.

Listing 183 See Step 6, Error 5.

RuntimeError: Could not find value 'final_slip_opening' in spatial database 'Fault rupture for main fault'. Available values are:
 final-slip-left-lateral
 final-slip-opening
 initiation-time

Listing 184 See Step 6, Error 6.

[0]PETSC ERROR: Zero pivot in LU factorization: https://petsc.org/release/faq/#zeropivot

Listing 185 See Step 6, Error 7.

[0]PETSC ERROR: Residual norm computed by GMRES recursion formula 3.48613e+10 is far from the computed residual norm 6.92443e+12 at restart, residual norm at start of cycle 6.91369e+12

Listing 186 See Step 6, Error 9.

[0]PETSC ERROR: Could not find values for initiation_time at (-24329 -29046.3) in spatial database 'Fault rupture for main fault'.

Step 1: Gravitational Body Forces

This example involves a static simulation that solves for the deformation from loading by gravitational body forces.
Fig. 115 shows the boundary conditions on the domain.
The parameters specific to this example are in step01_gravity.cfg.

[image:]
Fig. 115 We apply roller boundary conditions on the lateral sides and bottom of the domain.

See examples/reverse-2d Step 1 for more information.

Step 1: Error 1

Error Message

Listing 187 Error message 1 when running Step 1.

 1$ pylith step01_gravity.cfg
 2
 3Traceback (most recent call last):
 4 File "/software/baagaard/py38-venv/pylith-debug/bin/pylith", line 28, in <module>
 5 start(applicationClass=PyLithApp)
 6 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pythia/pyre/applications/__init__.py", line 42, in start
 7 shell.run(**kwds)
 8
 9 # -- many line omitted --
10
11 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pythia/pyre/inventory/ConfigContext.py", line 68, in configureComponent
12 component._validate(self)
13 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/bc/DirichletTimeDependent.py", line 120, in _validate
14 raise ValueError(f"No constrained degrees of freedom found for time-dependent Dirichlet boundary condition '{self.aliases[-1]}'. "
15ValueError: No constrained degrees of freedom found for time-dependent Dirichlet boundary condition 'bc_xpos'.
16'constrained_dof' must be a zero-based integer array (0=x, 1=y, 2=z).

Troubleshooting Strategy

The full error message includes a Python Traceback followed by the actual error message (lines 15-16) generated by the ValueError exception.
The error message indicates there is a problem with the parameters for pylithapp.problem.bc.bc_xpos.
We look for this section in the parameter files and find it in pylithapp.cfg.

Resolution

There is a typo in the section heading for pylithapp.problem.bc.bc_xpos.
Because the section heading has the wrong name, PyLith uses the defaults (no constrained degrees of freedom) and complains that no degrees of freedom are constrained by the Dirichlet boundary condition.

Listing 188 Correct error in pylithapp.cfg.

Error
[pylithapp.timedependent.bc.xpos]

Correct
[pylithapp.timedependent.bc.bc_xpos]

Step 1: Error 2

Error Message

Listing 189 Error message 2 when running Step 1.

 1$ pylith step01_gravity.cfg
 2
 3 >> {default}::
 4 -- pyre.inventory(error)
 5 -- timedependent.problem_defaults.name <- ''
 6 -- Missing required property 'name' in default options for problem.
 7 >> ./pylithapp.cfg:133:
 8 -- pyre.inventory(error)
 9 -- pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus.basis_order <- '0'
10 -- unknown component 'pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus'
11 >> ./pylithapp.cfg:134:
12 -- pyre.inventory(error)
13 -- pylithapp.timedependent.materials.elasticity.auxiliary_subfields.shear_modulus.basis_order <- '0'
14 -- unknown component 'pylithapp.timedependent.materials.elasticity.auxiliary_subfields.shear_modulus'
15usage: pylith [--<property>=<value>] [--<facility>.<property>=<value>] [FILE.cfg] ...
16component 'pylithapp'
17 properties: dump_parameters, help, help-components, help-persistence, help-properties, include-citations, initialize_only, job, launcher, mesh_generator, metadata, nodes, petsc, problem, scheduler, start_python_debugger, typos, weaver
18 facilities: dump_parameters,job,launcher,mesh_generator,metadata,petsc,problem,scheduler,weaver
19For more information:
20 --help-properties: prints details about user settable properties
21 --help-components: prints details about user settable facilities and components
22pylithapp: configuration error(s)

Troubleshooting Strategy

The full error message shows several errors associated with our parameter files.
Because errors often cascade, the best place to start is to address the first error (lines 3-6).
We see that the default name for problem_defaults is empty and PyLith requires one.
This name will be used as the first part of the filename for output.
We resolve this error by examining the parameters for pylithapp.timedependent.problem_defaults in step01_gravity.cfg.
We see that we do not set any of the problem defaults.

Resolution

We must set the simulation name in the problem defaults.

Listing 190 Correct error in pylithapp.cfg.

[pylithapp]
...
Set the name of the problem that will be used to construct the
output filenames. The default directory for output is 'output'.
problem.defaults.name = step01_gravity

Step 1: Error 3

Error Message

Listing 191 Error message 3 when running Step 1.

 1$ pylith step01_gravity.cfg
 2
 3 >> ./pylithapp.cfg:133:
 4 -- pyre.inventory(error)
 5 -- pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus.basis_order <- '0'
 6 -- unknown component 'pylithapp.timedependent.materials.elasticity.auxiliary_subfields.bulk_modulus'
 7 >> ./pylithapp.cfg:134:
 8 -- pyre.inventory(error)
 9 -- pylithapp.timedependent.materials.elasticity.auxiliary_subfields.shear_modulus.basis_order <- '0'
10 -- unknown component 'pylithapp.timedependent.materials.elasticity.auxiliary_subfields.shear_modulus'
11usage: pylith [--<property>=<value>] [--<facility>.<property>=<value>] [FILE.cfg] ...
12component 'pylithapp'
13 properties: dump_parameters, help, help-components, help-persistence, help-properties, include-citations, initialize_only, job, launcher, mesh_generator, metadata, nodes, petsc, problem, scheduler, start_python_debugger, typos, weaver
14 facilities: dump_parameters,job,launcher,mesh_generator,metadata,petsc,problem,scheduler,weaver
15For more information:
16 --help-properties: prints details about user settable properties
17 --help-components: prints details about user settable facilities and components
18pylithapp: configuration error(s)

Troubleshooting Strategy

Lines 3-6 indicate that we are trying to set the basis order for component pylithapp.timedependent.materials.elasticity.auxiliary_subfields that does not exist.
If we look up the documentation for components Elasticity and IsotropicLinearElasticity, then we see that the bulk_modulus auxiliary subfield is a subfield of the bulk rheology, not of the material.

Resolution

Listing 192 Correct error in pylithapp.cfg.

[pylithapp.problem.materials.wedge]
...
bulk_rheology.auxiliary_subfields.bulk_modulus.basis_order = 0
bulk_rheology.auxiliary_subfields.shear_modulus.basis_order = 0

Step 1: Error 4

Error Message

Listing 193 Error message 4 when running Step 1.

 1$ pylith step01_gravity.cfg
 2
 3 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/meshio/MeshIOObj.py:44:read
 4 -- meshiopetsc(info)
 5 -- Reading finite-element mesh
 6
 7# -- many lines omitted --
 8
 9 -- Verifying compatibility of problem configuration.
10Fatal error. Calling MPI_Abort() to abort PyLith application.
11Traceback (most recent call last):
12 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
13 self.main(*args, **kwds)
14 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 108, in main
15 self.problem.verifyConfiguration()
16 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 177, in verifyConfiguration
17 ModuleProblem.verifyConfiguration(self)
18 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 167, in verifyConfiguration
19 return _problems.Problem_verifyConfiguration(self)
20RuntimeError: Material label_value '3' for cell '3009' does not match the label_value of any materials or interfaces.

Troubleshooting Strategy

The output shows a Python Traceback and then the error message on Line 20.
The error indicates the finite-element mesh file contains a cell with a label value of 3, but the parameter files do not have a material with a label value of 3.
We examine the pylithapp.problem.materials sections of pylithapp.cfg and see that the label values are 0, 1, and 2 in the parameter file rather than 1, 2, and 3.

Resolution

Listing 194 Correct error in pylithapp.cfg.

[pylithapp.problem.materials.slab]
label_value = 1
...

[pylithapp.problem.materials.crust]
label_value = 2
...

[pylithapp.problem.materials.wedge]
label_value = 3
...

Step 1: Error 5

Error Message

Listing 195 Error message 5 when running Step 1.

 1$ pylith step01_gravity.cfg
 2
 3 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py:186:initialize
 4 -- timedependent(info)
 5 -- Initializing timedependent problem with quasistatic formulation.
 6[0]PETSC ERROR: --------------------- Error Message --
 7[0]PETSC ERROR: Error in external library
 8[0]PETSC ERROR: Error converting spatial database values for gravitational_acceleration at (-96623.5 -72650.4) in
 9spatial database 'Gravity field'. Found near zero magnitude (0) for gravity field vector (0 0).
10
11# -- lines with PETSc configuration omitted --
12
13[0]PETSC ERROR: #1 static PetscErrorCode pylith::topology::FieldQuery::queryDBPointFn(PylithInt, PylithReal, const PylithReal*, PylithInt, PylithScalar*, void*)() at /home/pylith-user/src/cig/pylith/libsrc/pylith/topology/FieldQuery.cc:327
14[0]PETSC ERROR: #2 DMProjectPoint_Func_Private() at /software/baagaard/petsc-dev/src/dm/impls/plex/plexproject.c:127
15[0]PETSC ERROR: #3 DMProjectPoint_Private() at /software/baagaard/petsc-dev/src/dm/impls/plex/plexproject.c:409
16[0]PETSC ERROR: #4 DMProjectLocal_Generic_Plex() at /software/baagaard/petsc-dev/src/dm/impls/plex/plexproject.c:902
17[0]PETSC ERROR: #5 DMProjectFunctionLocal_Plex() at /software/baagaard/petsc-dev/src/dm/impls/plex/plexproject.c:933
18[0]PETSC ERROR: #6 DMProjectFunctionLocal() at /software/baagaard/petsc-dev/src/dm/interface/dm.c:8869
19[0]PETSC ERROR: #7 void pylith::topology::FieldQuery::queryDB()() at /home/pylith-user/src/cig/pylith/libsrc/pylith/topology/FieldQuery.cc:211
20Fatal error. Calling MPI_Abort() to abort PyLith application.
21Traceback (most recent call last):
22 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
23 self.main(*args, **kwds)
24 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 110, in main
25 self.problem.initialize()
26 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 188, in initialize
27 ModuleProblem.initialize(self)
28 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 170, in initialize
29 return _problems.Problem_initialize(self)
30RuntimeError: Error detected while in PETSc function.

Troubleshooting Strategy

During initialization of the time-dependent problem, PyLith encountered an error while calling PETSc functions.
When an error occurs within a PETSc routine, PETSc dumps a lot of information to the screen.
First, it display the error message; second, it displays configuration information; third, it displays the stacktrace.
PyLith traps the PETSc error and displays the Python Traceback.
In this case, the error message on lines 8-9 indicate that the gravity field vector has a magnitude of zero.
We notice that it shows only the first two components because this is a 2D problem, whereas the default [https://spatialdata.readthedocs.io/en/latest/user/components/spatialdb/GravityField.html] is (0, 0, -1) and intended for 3D problems.

Resolution

Listing 196 Correct error in step01_gravity.cfg.

[pylithapp.problem]
gravity_field = spatialdata.spatialdb.GravityField
gravity_field.gravity_dir = [0.0, -1.0, 0.0]

Our simulation now runs without errors and the output looks correct.

Step 6: Slip on Two Faults

In this example we include coseismic prescribed slip on both the main and splay faults.
We specify 2 meters of reverse slip on the main fault and 1 meter of reverse slip on the splay fault.
Fig. 116 shows the boundary conditions on the domain.
The parameters specific to this example are in step06_twofaults.cfg.

[image:]
Fig. 116 Boundary conditions for static coseismic slip on both the main and splay faults.
We prescribe 2 meters of reverse slip on the main fault with 1 meter of reverse slip on the splay fauult.
We use roller boundary conditions on the lateral sides and bottom of the domain.

See examples/reverse-2d Step 6 for more information.

Step 6: Error 1

In troubleshooting Step 1 we resolved all of the errors associated with pylithapp.cfg.
In this example, we expect all errors to be associated with inputs files specific to Step 6, such as step06_twofaults.cfg.

Error Message

Listing 197 Error message 1 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 >> {default}::
 4 -- pyre.inventory(error)
 5 -- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.description <- ''
 6 -- Description for spatial database not specified.
 7 >> {default}::
 8 -- pyre.inventory(error)
 9 -- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.simpleioascii.filename <- ''
10 -- Filename for spatial database not specified.
11 >> step06_twofaults.cfg:68:
12 -- pyre.inventory(error)
13 -- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.filename <- 'fault_slip.spatialdb'
14 -- unrecognized property 'timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.filename'
15usage: pylith [--<property>=<value>] [--<facility>.<property>=<value>] [FILE.cfg] ...
16component 'pylithapp'
17 properties: dump_parameters, help, help-components, help-persistence, help-properties, include-citations, initialize_only, job, launcher, mesh_generator, metadata, nodes, petsc, problem, scheduler, start_python_debugger, typos, weaver
18 facilities: dump_parameters,job,launcher,mesh_generator,metadata,petsc,problem,scheduler,weaver
19For more information:
20 --help-properties: prints details about user settable properties
21 --help-components: prints details about user settable facilities and components
22pylithapp: configuration error(s)

Troubleshooting Strategy

We have several configuration errors, so we start with the first one at lines 3-6.
Spatial databases require a description, and PyLith cannot find one for timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.
We examine the fault parameters for step06_twofaults.cfg and see that db_auxiliary_field for the earthquake rupture is missing the description.

Resolution

Listing 198 Correct error in step06_twofaults.cfg.

[pylithapp.problem.interfaces.fault.eq_ruptures.rupture]
...
db_auxiliary_field.description = Fault rupture for main fault

Step 6: Error 2

Error Message

Listing 199 Error message 2 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 >> {default}::
 4 -- pyre.inventory(error)
 5 -- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.simpleioascii.filename <- ''
 6 -- Filename for spatial database not specified.
 7 >> step06_twofaults.cfg:68:
 8 -- pyre.inventory(error)
 9 -- timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.filename <- 'fault_slip.spatialdb'
10 -- unrecognized property 'timedependent.interfaces.faultcohesivekin.singlerupture.kinsrcstep.simpledb.filename'
11usage: pylith [--<property>=<value>] [--<facility>.<property>=<value>] [FILE.cfg] ...
12component 'pylithapp'
13 properties: dump_parameters, help, help-components, help-persistence, help-properties, include-citations, initialize_only, job, launcher, mesh_generator, metadata, nodes, petsc, problem, scheduler, start_python_debugger, typos, weaver
14 facilities: dump_parameters,job,launcher,mesh_generator,metadata,petsc,problem,scheduler,weaver
15For more information:
16 --help-properties: prints details about user settable properties
17 --help-components: prints details about user settable facilities and components
18pylithapp: configuration error(s)

Troubleshooting Strategy

We still have problem configuration errors.
The filename for the SimpleIOAscii reader for a SimpleDB is missing.
We examine the earthquake rupture parameters in step06_twofaults.cfg again and see that the filename is associated with the SimpleDB; however, if we look at the SimpleDB documentation [https://spatialdata.readthedocs.io/en/latest/user/components/spatialdb/SimpleDB.html] we notice that it has a reader SimpleIOAscii, which has a filename.

Resolution

Listing 200 Correct error in step06_twofaults.cfg.

Error
db_auxiliary_field.filename = fault_slip.spatialdb

Correct
db_auxiliary_field.iohandler.filename = fault_slip.spatialdb

Step 6: Error 3

Error Message

Listing 201 Error message 3 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 -- Verifying compatibility of problem configuration.
 4Fatal error. Calling MPI_Abort() to abort PyLith application.
 5Traceback (most recent call last):
 6 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
 7 self.main(*args, **kwds)
 8 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 108, in main
 9 self.problem.verifyConfiguration()
10 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 177, in verifyConfiguration
11 ModuleProblem.verifyConfiguration(self)
12 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 167, in verifyConfiguration
13 return _problems.Problem_verifyConfiguration(self)
14RuntimeError: Cannot find 'lagrange_multiplier_fault' subfield in solution field for fault implementation in component 'splay'.

Troubleshooting Strategy

We no longer have errors during the problem configuration.
Now we have errors while doing additional verification of the problem.
After the Python Traceback, we see the error message on line 14.
The faults check to make sure the solution field contains the necessary subfields, and the splay fault cannot find the lagrange_multiplier_fault subfield.
The easiest way to diagnose an error like this is to view the JSON file automatically generated by PyLith; it contains all of the parameters, including any defaults used.
We point our web browser to https://geodynamics.github.io/pylith_parameters/ and load the parameter file output/step06_twofaults-parameters.json.
In the left panel we navigate to the solution field and see that it the subfields are set to pylith.problems.SolnDisp, so that the solution field only contains a single subfield, displacement.
We want the solution field to contain both displacement and lagrange_multiplier_fault.

Resolution

Listing 202 Correct error in step06_twofaults.cfg.

[pylithapp.problem]
solution = pylith.problems.SolnDispLagrange

Step 6: Error 4

Error Message

Listing 203 Error message 4 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 -- Initializing timedependent problem with quasistatic formulation.
 4Fatal error. Calling MPI_Abort() to abort PyLith application.
 5Traceback (most recent call last):
 6 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
 7 self.main(*args, **kwds)
 8 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 110, in main
 9 self.problem.initialize()
10 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 188, in initialize
11 ModuleProblem.initialize(self)
12 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 170, in initialize
13 return _problems.Problem_initialize(self)
14RuntimeError: Error occurred while reading spatial database file 'fault_slip.spatialdb'.
15Read data for 3 out of 4 points.
16Error reading coordinates from buffer ''.

Troubleshooting Strategy

The error message on lines 14-15 indicates there is an error reading the fault_slip.spatialdb spatial database for the fault slip.
PyLith was able to read data for 3 of 4 points.
The file fault_slip.spatialdb contains only 3 points but num-locs is 4.

Resolution

Listing 204 Correct error in fault_slip.spatialdb.

Error
num-locs = 4

Correct
num-locs = 3

Step 6: Error 5

Error Message

Listing 205 Error message 5 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 -- Initializing timedependent problem with quasistatic formulation.
 4Fatal error. Calling MPI_Abort() to abort PyLith application.
 5Traceback (most recent call last):
 6 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
 7 self.main(*args, **kwds)
 8 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 110, in main
 9 self.problem.initialize()
10 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 188, in initialize
11 ModuleProblem.initialize(self)
12 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 170, in initialize
13 return _problems.Problem_initialize(self)
14RuntimeError: Could not find value 'final_slip_opening' in spatial database 'Fault rupture for main fault'. Available values are:
15 final-slip-left-lateral
16 final-slip-opening
17 initiation-time

Troubleshooting Strategy

We have more errors with fault_slip.spatialdb.
The error message on lines 14-17 shows that PyLith is looking for final_slip_opening in the spatial database, but it found final-slip-opening instead.
We need to change the dashes (used in PyLith v1.x and v2.x) to underscores (used in PyLith v3.x); we made this change to be consistent with the names of the output fields.

Resolution

Listing 206 Correct error in fault_slip.spatialdb.

Error
value-names = final-slip-left-lateral final-slip-opening initiation-time

Correct
value-names = final_slip_left_lateral final_slip_opening initiation_time

Step 6: Error 6

Error Message

Listing 207 Error message 6 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3# -- many lines omitted --
 4
 5 -- Solving problem.
 60 TS dt 0.01 time 0.
 7 0 SNES Function norm 2.001189838638e-02
 8[0]PETSC ERROR: --------------------- Error Message --
 9[0]PETSC ERROR: Zero pivot in LU factorization: https://petsc.org/release/faq/#zeropivot
10[0]PETSC ERROR: Zero pivot row 78 value 1.11022e-16 tolerance 2.22045e-14
11# -- lines with PETSc configuration omitted --
12[0]PETSC ERROR: #1 MatPivotCheck_none() at /software/baagaard/petsc-dev/include/petsc/private/matimpl.h:802
13[0]PETSC ERROR: #2 MatPivotCheck() at /software/baagaard/petsc-dev/include/petsc/private/matimpl.h:821
14# -- many lines of PETSc stack omitted --
15[0]PETSC ERROR: #34 void pylith::problems::TimeDependent::deallocate()() at /home/pylith-user/src/cig/pylith/libsrc/pylith/problems/TimeDependent.cc:92
16Traceback (most recent call last):
17 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
18 self.main(*args, **kwds)
19 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 120, in main
20 self.problem.run(self)
21 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/TimeDependent.py", line 141, in run
22 ModuleTimeDependent.solve(self)
23 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 223, in solve
24 return _problems.TimeDependent_solve(self)
25RuntimeError: Error detected while in PETSc function.

Troubleshooting Strategy

PETSc encounters a zero pivot during the LU factorization.
This suggests there is an error in how we setup the problem.
We examine the parameters in step06_twofaults.cfg, and we do not find any obvious errors.
We load the info files into ParaView to visualize their contents for errors.
After loading step06_twofaults-fault_info.xmf and step06_twofaults-splay_info.xmf, we see that the faults cross each other as shown in Fig. 117.
In step06_twofaults.cfg we see that the splay fault is listed first in the array of faults.
The through-going fault (main fault) should be listed first.

[image:]

Fig. 117 Incorrect geometry for the splay and main faults.
The splay fault crosses the main fault instead of terminating where they intersect.

Resolution

Listing 208 Correct error in step06_twofaults.cfg.

Error
[pylithapp.problem]
interfaces = [splay, fault]

Correct
[pylithapp.problem]
interfaces = [fault, splay]

Step 6: Error 7

Error Message

Listing 209 Error message 7 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3# -- many lines omitted --
 4
 5 -- Solving problem.
 60 TS dt 0.01 time 0.
 7 0 SNES Function norm 2.024143393875e-02
 8[0]PETSC ERROR: --------------------- Error Message --
 9[0]PETSC ERROR: Residual norm computed by GMRES recursion formula 3.48613e+10 is far from the computed residual norm 6.92443e+12 at restart, residual norm at start of cycle 6.91369e+12
10# -- lines with PETSc configuration omitted --
11[0]PETSC ERROR: #1 KSPGMRESCycle() at /software/baagaard/petsc-dev/src/ksp/ksp/impls/gmres/gmres.c:126
12[0]PETSC ERROR: #2 KSPSolve_GMRES() at /software/baagaard/petsc-dev/src/ksp/ksp/impls/gmres/gmres.c:243
13# -- many lines of PETSc stack omitted --
14[0]PETSC ERROR: #11 void pylith::problems::TimeDependent::solve()() at /home/pylith-user/src/cig/pylith/libsrc/pylith/problems/TimeDependent.cc:429
15Fatal error. Calling MPI_Abort() to abort PyLith application.
16Traceback (most recent call last):
17 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
18 self.main(*args, **kwds)
19 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 120, in main
20 self.problem.run(self)
21 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/TimeDependent.py", line 141, in run
22 ModuleTimeDependent.solve(self)
23 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 223, in solve
24 return _problems.TimeDependent_solve(self)
25RuntimeError: Error detected while in PETSc function.

Troubleshooting Strategy

PETSc encounters another error during the solve.
This also suggests there is an error in how we setup the problem.
We again load the info files into ParaView to visualize their contents for errors.
After loading step06_twofaults-fault_info.xmf and step06_twofaults-splay_info.xmf, we see that the faults overlap just below their intersection as shown in Fig. 118.
The bottom of each fault is buried, so we need to identify the buried edges so that when PyLith inserts the cohesive cells it can terminate the fault properly.

[image:]

Fig. 118 Incorrect geometry for the splay and main faults.
The two faults overlap just below their intersection.
The bottom edge of each fault is buried, so we must identify the buried edges so that PyLith properly terminates the edges of the faults when inserting the cohesive cells.

Resolution

Listing 210 Correct error in step06_twofaults.cfg.

[pylithapp.problem.interfaces.fault]
...
edge = fault_end
edge_value = 21

[pylithapp.problem.interfaces.splay]
...
edge = splay_end
edge_value = 23

Step 6: Error 8

Error Message

Listing 211 Output when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 -- Solving problem.
 40 TS dt 0.01 time 0.
 5 0 SNES Function norm 1.975141284264e-02
 6 Linear solve converged due to CONVERGED_ATOL iterations 408
 7 1 SNES Function norm 7.771687291628e-13
 8 Nonlinear solve converged due to CONVERGED_FNORM_ABS iterations 1
 91 TS dt 0.01 time 0.01
10 >> /software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py:201:finalize
11 -- timedependent(info)
12 -- Finalizing problem.

Troubleshooting Strategy

The simulation ran without errors.
In visualizing the output we notice the slip distribution contains a sharp transition from 0 m to 2.0 m; we intended to prescribe slip that is uniform above y=-20 km and tapers linearly to 0 at y=-30 km.
We load the JSON parameter file into the PyLith Parameter Viewer and find that we are using the default query_type of nearest for the earthquake rupture parameters.
For our intended piecewise linear variation in slip, we need to use linear for the query_type.

Resolution

Listing 212 Correct error in step06_twofaults.cfg.

[pylithapp.problem.interfaces.fault]
...
db_auxiliary_field.query_type = linear

Step 6: Error 9

Error Message

Listing 213 Error message 9 when running Step 6.

 1$ pylith step06_twofaults.cfg
 2
 3 -- Initializing timedependent problem with quasistatic formulation.
 4[0]PETSC ERROR: --------------------- Error Message --
 5[0]PETSC ERROR: Error in external library
 6[0]PETSC ERROR: Could not find values for initiation_time at (-24329 -29046.3) in spatial database 'Fault rupture for main fault'.
 7# -- lines with PETSc configuration omitted --
 8[0]PETSC ERROR: #1 static PetscErrorCode pylith::topology::FieldQuery::queryDBPointFn(PylithInt, PylithReal, const PylithReal*, PylithInt, PylithScalar*, void*)() at /home/pylith-user/src/cig/pylith/libsrc/pylith/topology/FieldQuery.cc:313
 9# -- many lines of PETSc stack omitted --
10[0]PETSC ERROR: #6 DMProjectFunctionLocal() at /software/baagaard/petsc-dev/src/dm/interface/dm.c:8869
11[0]PETSC ERROR: #7 void pylith::topology::FieldQuery::queryDB()() at /home/pylith-user/src/cig/pylith/libsrc/pylith/topology/FieldQuery.cc:211
12Fatal error. Calling MPI_Abort() to abort PyLith application.
13Traceback (most recent call last):
14 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PetscApplication.py", line 61, in onComputeNodes
15 self.main(*args, **kwds)
16 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/apps/PyLithApp.py", line 110, in main
17 self.problem.initialize()
18 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/Problem.py", line 188, in initialize
19 ModuleProblem.initialize(self)
20 File "/software/baagaard/py38-venv/pylith-debug/lib/python3.8/site-packages/pylith/problems/problems.py", line 170, in initialize
21 return _problems.Problem_initialize(self)
22RuntimeError: Error detected while in PETSc function.

Troubleshooting Strategy

With the linear interpolation we get an error about not being able to find an initiation time for a point.
This suggests there are is one or more errors in our spatial database file related to interpolation.
We examine the header and data points for errors.
We notice that our points lie along a line (data dimension is 1), but our header has data-dim=2.

Resolution

Listing 214 Correct error in step06_twofaults.cfg.

Error
data-dim = 2

Correct
data-dim = 1

Our simulation now runs without errors and the output looks correct.

Additional Examples

CUBIT Meshing Examples

The directory examples/meshing-cubit contains several examples of using CUBIT to construct finite-element meshes for complex geometry.
This includes features such as constructing nonplanar fault geometry from contours, constructing topography from a DEM, and merging sheet bodies (surfaces).
A separate examples discusses defining the discretization size using a vertex field in an Exodus-II file.
See the README files in the subdirectories for more detailed descriptions of these examples.

Troubleshooting Examples

The directory examples/troubleshooting-2d contains a few examples to practice troubleshooting a variety of user errors in parameters files and problem setup.
The files with the errors corrected are in examples/troubleshooting-2d/correct.

Code Verification Benchmarks

The CIG GitHub software repository https://github.com/geodynamics/pylith_benchmarks contains input files for a number of community benchmarks.
The benchmarks do not include the mesh files because they are so large; instead they include the CUBIT journal files that can be used to generate the meshes.
Most, but not all, of the input files in the repository are updated for PyLith v2.0.0, so you will need to modify them if you use another version of PyLith.

Benchmarks

Warning

None of the benchmark input files in the PyLith benchmarks repository on GitHub have been updated for v3.0.

Overview

The Crustal Deformation Modeling and Earthquake Source Physics Focus Groups within the Southern California Earthquake Center and the Short-Term Tectonics Working Group within CIG have developed a suite of benchmarks to test the accuracy and performance of 3D numerical codes for quasistatic crustal deformation and earthquake rupture dynamics.
The benchmark definitions for the quasistatic crustal deformation benchmarks are posted on the CIG website at Short-Term Tectonics Benchmarks https://geodynamics.org/cig/workinggroups/short/workarea/benchmarks/ and the definitions for the earthquake rupture benchmarks are posted on the SCEC website https://strike.scec.org/cvws/cgi-bin/cvws.cgi.
This suite of benchmarks permits evaluating the relative performance of different types of basis functions, quadrature schemes, and discretizations for geophysical applications.
The files needed to run the 3D benchmarks are in the CIG GitHub Repository https://github.com/geodynamics/pylith_benchmarks.
In addition to evaluating the efficiency and accuracy of numerical codes, the benchmarks also make good test problems, where users can perform simulations based on actual geophysical problems.
The benchmarks are performed at various resolutions and using different element types.
By comparing the runtime and accuracy for different resolutions and element types, users can evaluate which combination will be best for their problems of interest.

	Strike-Slip Benchmark
	Problem Description

	Running the Benchmark

	Benchmark Results
	Solution Accuracy

	Performance

	Savage and Prescott Benchmark
	Problem Description

	Running the Benchmark

	Benchmark Results

	SCEC Dynamic Rupture Benchmarks

Strike-Slip Benchmark

This benchmark problem computes the viscoelastic (Maxwell) relaxation of stresses from a single, finite, strike-slip earthquake in 3D without gravity.
Dirichlet boundary conditions equal to the analytical elastic solution are imposed on the sides of a cube with sides of length 24 km.
Anti-plane strain boundary conditions are imposed at y = 0, so the solution is equivalent to that for a domain with a 48 km length in the y direction.
We can use the analytical solution of Okada [1992] both to apply the boundary conditions and to compare against the numerically-computed elastic solution.

Problem Description

Fig. 119 shows the geometry of the strike-slip fault (red surface) embedded in the cube consisting of an elastic material (yellow block) over a Maxwell viscoelastic material (blue block).

Domain
The domain spans the region

(179)\[\begin{gather}
0\leq x\leq24\ km,\\
0\leq y\leq24\ km,\\
-24\ km\leq z\leq0.
\end{gather}\]

The top (elastic) layer occupies the region \(-12\ km\ \leq z\leq0\) and the bottom (viscoelastic) layer occupies the region \(-24\ km\ \leq z\leq-12\ km\).

Material properties
The material is a Poisson solid with a shear modulus of 30 GPa.
The domain is modeled using an elastic isotropic material for the top layer and a Maxwell viscoelastic material for the bottom layer.
The bottom layer has a viscosity of 1.0e+18 Pa-s.

Fault
The fault is a vertical, right-lateral strike-slip fault.
The strike is parallel to the y-direction at the center of the model:

(180)\[\begin{gather}
x=12\ km,\\
0\leq y\leq16\ km,\\
-16\ km\leq z\leq0.
\end{gather}\]

Uniform slip of 1 m is applied over the region \(0\leq y\leq12\ km\) and \(-12\ km\leq z\leq0\) with a linear taper to 0 at y = 16 km and z = -16 km.
The tapered region is the light red portion of the fault surface in Fig. 119.
In the region where the two tapers overlap, each slip value is the minimum of the two tapers (so that the taper remains linear).

Boundary conditions
Bottom and side displacements are set to the elastic analytical solution, and the top of the model is a free surface.
There are two exceptions to these applied boundary conditions.
The first is on the y=0 plane, where y-displacements are left free to preserve symmetry, and the x- and z-displacements are set to zero.
The second is along the line segment between (12, 0, -24) and (12, 24, -24), where the analytical solution blows up in some cases.
Along this line segment, all three displacement components are left free.

Discretization
The model is discretized with nominal spatial resolutions of 1000 m, 500 m, and 250 m.

Basis functions
We use trilinear hexahedral cells and linear tetrahedral cells.

Solution
We compute the error in the elastic solution and compare the solution over the domain after 0, 1, 5, and 10 years.

[image: Geometry of strike-slip benchmark problem.]

Fig. 119 Geometry of strike-slip benchmark problem.

Running the Benchmark

Each benchmark uses three .cfg files in the parameters directory: pylithapp.cfg, a mesher related file (strikeslip_cubit.cfg), and a resolution and cell related file (e.g., strikeslip_hex8_1000m.cfg).

Checkout the benchmark files from the CIG Git repository.
$ git clone https://github.com/geodynamics/pylith_benchmarks.git
Change to the quasistatic/sceccrustdeform/strikeslip directory.
$ cd quasistatic/sceccrustdeform/strikeslip
Decompress the gzipped files in the meshes and parameters directories.
$ gunzip meshes/*.gz parameters/*.gz
Change to the parameters directory.
$ cd parameters
Examples of running static (elastic solution only) cases.
$ pylith strikeslip_cubit.cfg strikeslip_hex8_1000m.cfg
$ pylith strikeslip_cubit.cfg strikeslip_hex8_0500m.cfg
$ pylith strikeslip_cubit.cfg strikeslip_tet4_1000m.cfg
Append timedep.cfg to run the time-dependent (viscoelastic cases).
$ pylith strikeslip_cubit.cfg strikeslip_hex8_1000m.cfg timedep.cfg
$ pylith strikeslip_cubit.cfg strikeslip_hex8_0500m.cfg timedep.cfg
$ pylith strikeslip_cubit.cfg strikeslip_tet4_1000m.cfg timedep.cfg

This will run the problem for 10 years, using a time-step size of 0.1 years, and results will be output for each year.
The benchmarks at resolutions of 1000 m, 500 m, and 250 m require approximately 150 MB, 960 MB, and 8 GB, respectively.

Benchmark Results

Fig. 120 shows the displacement field from the simulation with hexahedral cells using trilinear basis functions at a resolution of 1000 m.
For each resolution and set of basis functions, we measure the accuracy by comparing the numerical solution against the semi-analytical Okada solution [Okada, 1992]. We also compare the accuracy and runtime across resolutions and different cell types.
This provides practical information about what cell types and resolutions are required to achieve a given level of accuracy with the shortest runtime.

[image: Displacement field for strike-slip benchmark problem.]

Fig. 120 Displacement field for strike-slip benchmark problem.

Solution Accuracy

We quantify the error in the finite-element solution by integrating the L2 norm of the difference between the finite-element solution and the semi-analytical solution evaluated at the quadrature points.
We define the local error (error for each finite-element cell) to be

(181)\[\begin{equation}
\epsilon_{local}=\frac{1}{V_{cell}}\sqrt{\intop_{cell}\left(u_{i}^{t}-u_{i}^{fem}\right)^{2}\: dV},
\end{equation}\]

where \(u_{i}^{t}\) is the ith component of the displacement field for the semi-analytical solution, and \(u_{i}^{fem}\) is the ith component of the displacement field for the finite-element solution.
Taking the square root of the L2 norm and normalizing by the volume of the cell results in an error metric with dimensions of length.
This roughly corresponds to the error in the magnitude of the displacement field in the finite element solution.
We define the global error in a similar fashion,

(182)\[\begin{equation}
\epsilon_{global}=\frac{1}{V_{domain}}\sqrt{\intop_{domain}\left(u_{i}^{t}-u_{i}^{fem}\right)^{2}\: dV},
\end{equation}\]

where we sum the L2 norm computed for the local error over all of the cells before taking the square root and dividing by the volume of the domain.

Figures Fig. 121 through Fig. 126 show the local error for each of the three resolutions and two cell types.
The error decreases with decreasing cell size as expected for a converging solution.
The largest errors, which approach 1 mm for 1 m of slip for a discretization size of 250 m, occur where the gradient in slip is discontinuous at the boundary between the region of uniform slip and linear taper in slip.
The linear basis functions cannot match this higher order variation.
The trilinear basis functions in the hexahedral element provide more terms in the polynomial defining the variation in the displacement field within each cell compared to the linear basis functions for the tetrahedral cell.
Consequently, for this problem the error for the hexahedral cells at a given resolution is smaller than that for the tetrahedral cells.
Both sets of cell types and basis functions provide the same rate of convergence as shown in Fig. 127.

[image: Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 1000 m.]

Fig. 121 Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 1000 m.

[image: Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 1000 m.]

Fig. 122 Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 1000 m.

[image: Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 500 m.]

Fig. 123 Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 500 m.

[image: Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 500 m.]

Fig. 124 Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 500 m.

[image: Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 250 m.]

Fig. 125 Local error for strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 250 m.

[image: Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 250 m.]

Fig. 126 Local error for strike-slip benchmark problem with hexahedral cells and trilinear basis functions with a uniform discretization size of 250 m.

[image: Convergence rate for the strike-slip benchmark problem with tetrahedral cells and linear basis functions and with hexahedral cells with trilinear basis functions.]

Fig. 127 Convergence rate for the strike-slip benchmark problem with tetrahedral cells and linear basis functions and with hexahedral cells with trilinear basis functions.

Performance

Fig. 128 summarizes the overall performance of each of the six simulations.
Although at a given resolution, the number of degrees of freedom in the hexahedral and tetrahedral meshes are the same, the number of cells in the tetrahedral mesh is about six times greater.
However, we use only one integration point per tetrahedral cell compared to eight for the hexahedral cell.
This leads to approximately the same number of integration points for the two meshes, but the time required to unpack/pack information for each cell from the finite-element data structure is greater than the time required to do the calculation for each quadrature point (which can take advantage of the very fast, small memory cache in the processor).
As a result, the runtime for the simulations with hexahedral cells is significantly less than that for the tetrahedral cells at the same resolution.

[image: Summary of performance of PyLith for the six simulations of the strike-slip benchmark. For a given discretization size, hexahedral cells with trilinear basis functions provide greater accuracy with a shorter runtime compared with tetrahedral cells and linear basis functions.]
Fig. 128 Summary of performance of PyLith for the six simulations of the strike-slip benchmark. For a given discretization size, hexahedral cells with trilinear basis functions provide greater accuracy with a shorter runtime compared with tetrahedral cells and linear basis functions.

Fig. 129 compares the runtime for the benchmark (elastic solution only) at 500 m resolution for 1 to 16 processors.
The total runtime is the time required for the entire simulation, including initialization, distributing the mesh over the processors, solving the problem in parallel, and writing the output to VTK files.
Some initialization steps, writing the output to VTK files, and distributing the mesh are essentially serial processes.
For simulations with many time steps these steps will generally occupy only a fraction of the runtime, and the runtime will be dominated by the solution of the equations.
Fig. 129 also shows the total time required to form the Jacobian of the system, form the residual, and solve the system.
These steps provide a more accurate representation of the parallel-performance of the computational portion of the code and show excellent performance as evident in the approximately linear slope of 0.7.
A linear decrease with a slope of 1 would indicate strong scaling, which is rarely achieved in real applications.

[image: Parallel performance of PyLith for the strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 500 m. The total runtime (total) and the runtime to compute the Jacobian and residual and solve the system (compute) are shown. The compute runtime decreases with a slope of about 0.7; a linear decrease with a slope of 1 would indicate strong scaling, which is rarely achieved in any real application.]
Fig. 129 Parallel performance of PyLith for the strike-slip benchmark problem with tetrahedral cells and linear basis functions with a uniform discretization size of 500 m. The total runtime (total) and the runtime to compute the Jacobian and residual and solve the system (compute) are shown. The compute runtime decreases with a slope of about 0.7; a linear decrease with a slope of 1 would indicate strong scaling, which is rarely achieved in any real application.

Savage and Prescott Benchmark

This benchmark problem computes the viscoelastic (Maxwell) relaxation of stresses from repeated infinite, strike-slip earthquakes in 3D without
gravity.
The files needed to run the benchmark may be found at https://github.com/geodynamics/pylith_benchmarks/tree/master/quasistatic/sceccrustdeform/savageprescott.
An analytical solution to this problem is described by Savage and Prescott [Savage and Prescott, 1978], which provides a simple way to check our numerical
solution.
A python utility code is provided in the utils directory to compute the analytical solution.
Although this problem is actually 2.5D (infinite along-strike), we solve it using a 3D finite element model.

Problem Description

Fig. 130 shows the geometry of the problem, as described by [Savage and Prescott, 1978].
The analytical solution describes the surface deformation due to repeated earthquakes on an infinite strike-slip fault embedded in an elastic layer overlying a Maxwell viscoelastic half-space.
The upper portion of the fault (red in the figure) is locked between earthquakes, while the lower portion (blue in the figure) creeps at plate velocity.
At regular recurrence intervals, the upper portion of the fault abruptly slips by an amount equal to the plate velocity multiplied by the recurrence interval, thus “catching up” with the lower part of the fault.

There are some differences between the analytical solution and our numerical representation.
First, the analytical solution represents the earthquake cycle as the superposition of uniform fault creep and an elementary earthquake cycle.
Uniform fault creep is simply the uniform movement of the two plates past each other at plate velocity.
For the elementary earthquake cycle, no slip occurs below the locked portion of the fault (blue portion in the figure).
On the locked (red) portion of the fault, backslip equal to plate velocity occurs until the earthquake recurrence interval, at which point abrupt forward slip occurs.
In the finite element solution, we perform the simulation as described in the figure.
Velocity boundary conditions are applied at the extreme edges of the model to simulate block motion, steady creep is applied along the blue portion of the fault, and regular earthquakes are applied along the upper portion of the fault.
It takes several earthquake cycles for the velocity boundary conditions to approximate the steady flow due to steady block motion, so we would not expect the analytical and numerical solutions to match until several earthquakes have occurred.
Another difference lies in the dimensions of the domain.
The analytical solution assumes an infinite strike-slip fault in an elastic layer overlying a Maxwell viscoelastic half-space.
In our finite element model we are restricted to finite dimensions.
We therefore extend the outer boundaries far enough from the region of interest to approximate boundaries at infinity.

Due to the difficulties in representing solutions in an infinite domain, there are several meshes that have been tested for this problem.
The simplest meshes have uniform resolution (all cells have equal dimensions); however, such meshes typically do not provide accurate solutions since the resolution is too coarse in the region of interest.
For that reason, we also tested meshes where the mesh resolution decreases away from the center.
In the problem description that follows, we will focus on the hexahedral mesh with finer discretization near the fault (meshes/hex8_6.7km.exo.gz), which provides a good match with the analytical solution.
It will first be necessary to gunzip this mesh so that it may be used by PyLith.

Domain

The domain for this mesh spans the region

(183)\[\begin{gather}
-1000\leq x\leq1000\ km,\\
-500\leq y\leq500\ km,\\
-400\ km\leq z\leq0.
\end{gather}\]

The top (elastic) layer occupies the region \(-40\ km\ \leq z\leq0\) and the bottom (viscoelastic) layer occupies the region \(-400\ km\ \leq z\leq-40\ km\).

Material properties

The material is a Poisson solid with a shear modulus (\(\mu\)) of 30 GPa.
The domain is modeled using an elastic isotropic material for the top layer and a Maxwell viscoelastic material for the bottom layer.
The bottom layer has a viscosity (\(\eta\)) of 2.36682e+19 Pa-s, yielding a relaxation time (\(2\eta/\mu\)) of 50 years.

Fault

The fault is a vertical, left-lateral strike-slip fault.
The strike is parallel to the y-direction at the center of the model:

(184)\[\begin{gather}
x=0\ km,\\
-500\leq y\leq500\ km,\\
-40\ km\leq z\leq0.
\end{gather}\]

The locked portion of the fault (red section in Fig. 130) extends from \(-20\: km\leq z\leq0\), while the creeping section (blue) extends from \(-40\: km\leq z\leq0\).
Along the line where the two sections coincide (\(z=-20\: km\)), half of the coseismic displacement and half of the steady creep is applied (see finalslip.spatialdb and creeprate.spatialdb).

Boundary conditions

On the bottom boundary, vertical displacements are set to zero, while on the y-boundaries the x-displacements are set to zero.
On the x-boundaries, the x-displacements are set to zero, while constant velocities of +/- 1 cm/yr are applied in the y-direction, giving a relative plate motion of 2 cm/year.

Discretization

For the nonuniform hexahedral mesh, the resolution at the outer boundaries is 20 km.
An inner region is then put through one level of refinement, so that near the center of the mesh the resolution is 6.7 km.
All meshes were generated with CUBIT.

Basis functions

We use trilinear hexahedral cells.

Solution

We compute the surface displacements and compare these to the analytical solution in Fig. 131.

[image: Problem description for the Savage and Prescott strike-slip benchmark problem.]
Fig. 130 Problem description for the Savage and Prescott strike-slip benchmark problem.

Running the Benchmark

There are a number of .cfg files corresponding to the different meshes, as well as a pylithapp.cfg file defining parameters common to all problems.
Each problem uses four .cfg files: pylithapp.cfg, fieldsplit.cfg (algrebraic multigrid preconditioner), a cell-specific file (e.g., hex8.cfg), and a resolution specific file (e.g., hex8_6.7km.cfg).

If you have not do so already, checkout the benchmarks from the CIG Git repository.
$ git clone https://github.com/geodynamics/pylith_benchmarks.git
Change to the quasistatic/sceccrustdeform/savageprescott directory.
$ cd quasistatic/sceccrustdeform/savageprescott
Decompress the gzipped files in the meshes directory.
$ gunzip meshes/*.gz
Run one of the simulations.
$ pylith hex8.cfg hex8_6.7km.cfg fieldsplit.cfg

Each simulation uses 10 earthquake cycles of 200 years each, using a time-step size of 10 years, for a total simulation time of 2000 years.
Ground surface output occurs every 10 years, while all other outputs occur every 50 years.

Once the problem has run, results will be placed in the output directory.
These results may be viewed directly using 3-D visualization software such as ParaView; however, to compare results to the analytical solution, some postprocessing is required.
First, generate the analytical results by running the calc_analytic.py script.
This will produce files with displacements and velocities (analytic_disp.txt and analytic_vel.txt) in the output directory that are easy to use with a plotting package, such as matplotlib or Matlab.

Benchmark Results

Fig. 131 shows the computed surface displacements for the 10th earthquake cycle compared with the analytical solution.
The profile results were obtained as described above, and then all results (analytical and numerical) were referenced to the displacements immediately following the last earthquake.
We find very good agreement between the analytical and numerical solutions, even for meshes with uniform refinement.
We have not yet explored quantitative fits as a function of mesh resolution.
For this benchmark, it is also important to consider the distance of the boundary from the region of interest.
Also note that the agreement between analytical and numerical solutions is poor for early earthquake cycles, due to the differences in simulating the problem, as noted above.

[image: Displacement profiles perpendicular to the fault for a PyLith simulation with hex8 cells and the analytical solution for earthquake cycle 10.]
Fig. 131 Displacement profiles perpendicular to the fault for a PyLith simulation with hex8 cells and the analytical solution for earthquake cycle 10.

SCEC Dynamic Rupture Benchmarks

The SCEC website https://strike.scec.org/cvws/cgi-bin/cvws.cgi includes a graphical user interface for examining the benchmark results.
Benchmark results for PyLith are available for TPV205-2D (horizontal slice through a vertical strike-slip fault), TPV205 (vertical strike-slip fault with high and low stress asperities), TPV210-2D (vertical slice through a 60-degree dipping normal fault), TPV210 (60-degree dipping normal fault), TPV11, TPV12, TPV13, TPV14-2D and TPV15-2D (horizontal slice through a verticel strike-slip fault with a branch), TPV14, TPV15, TPV 24, TPV25 (vertical strike-slip fault with a branch), TPV 16 and 17 (vertical strike-slip fault with spatially heterogeneous initial tractions), TPV 22 and 23 (vertical strike-slip fault with a stepover), TPV102 (vertical strike-slip fault with rate-state friction).

The benchmark results indicate that triangular and tetrahedral cells generate less numerical noise than quadrilateral or hexahedral cells.
The input files in the repository are updated for PyLith v2.0.0, so you will need to modify them if you use another version of PyLith.

Glossary

Pyre

	component
	Basic building block of a Pyre application.
A component may be built-up from smaller building blocks, where simple data types are called properties and data structures and objects are called facilities.
In general a component is a specific implementation of the functionality of a facility.
For example, SimpleDB is a specific implementation of the spatial database facility.
A component is generally composed of a Python object and a C++ object, although either one may be missing.
We nearly always use the naming convention such that for an object called Foo the Python object is in file Foo.py, the C++ class definition is in Foo.hh, inline C++ functions are in foo.icc, the C++ class implementation is in Foo.cc, and the SWIG interface file that glues the C++ and Python code together is in Foo.i.

	facility
	Complex data type (object or data structure) building block of a component.
See “component”.

	property
	Simple data type (string, integer, real number, or boolean value) parameter for a component.

DMPlex

The plex construction is a representation of the topology of the finite-element mesh based upon a covering relation.
For example, segments are covered by their endpoints, faces by their bounding
edges, etc.
Geometry is absent from the plex, and is represented instead by a field with the coordinates of the vertices.
Meshes can also be understood as directed acyclic graphs, where we call the constituents points and arrows.
See PETSc Finite-Element Implementation for additional details.

	cell
	The highest dimensional elements of a mesh, or mesh entities of codimension zero.

	cone
	The set of entities which cover any entity in a mesh.
For example, the cone of a triangle is its three edges.

	dimension
	The topological dimension of the mesh, meaning the cell dimension.
It can also mean the dimension of the space in which the mesh is embedded, but this is properly called the embedding dimension.

	dual space
	For any vector space \(V\) over a field \(F\), the dual space \(V^{*}\) is the set of all linear functions \(\phi : V \rightarrow F\).
If \(V\) is finite dimensional, then \(V^{*}\) has the same dimension as \(V\).
See https://en.wikipedia.org/wiki/Dual_space and https://https://finite-element.github.io/L2_fespaces.html.

	face
	Mesh elements that separate cells, or mesh entities of codimension one.

	field
	A parallel section which can be completed, or made consistent, across process boundaries.
These are used to represent continuum fields.

	mesh
	A finite element mesh, used to partition space and provide support for the basis functions.

	projection
	Interpolation of analytical or discretized functions into the finite-element space.
See Projection for more information.

	section
	These objects associate values in vectors to points (vertices, edges, faces, and cells) in a mesh.
The section describes the offset into the vector along with the number of values associated with each point.

	support
	The set of mesh entities which are covered by any entity in a mesh.
For example, the support of a triangle is the two tetrahedra it separates.

	vertex
	The zero dimensional mesh elements.

PyLith

	auxiliary field
	A field used to specify parameters and state variables for physics.
For an elastic materials the auxiliary field contains the elastic properties.
For a Dirichlet boundary condition the auxiliary field contains the parameters specifying the solution as a function of space and time.

	basis order
	Order of the polynomial basis functions used to represent a field.

	cohesive cell
	A zero volume cell inserted between two cells which share a fault face.
They are prisms with a fault face as the base.

	derived field
	A field that can be computed from the solution field.
For example, the infinitesimal strain can be computed from the displacement field.

	quadrature order
	Order of the quadrature scheme used in numerical integration.
The integrals in the weak form are integrated using numerical quadrature.
The location of the quadrature points are usually found to achieve a desired order of accuracy in integrated fields.

	solution field
	A field with subfields for the unkown values that will be determined by solving a system of equations.

	spatial database
	Data specifying values of one or more fields as a function of space.
The topology and resolution of the spatial database is set to match the data and is independent of the finite-element mesh.
The spatialdata library contains a few different implementations of spatial databases.

File Formats

	PyLith Mesh ASCII File

	Points List File

PyLith Mesh ASCII File

PyLith mesh ASCII files allow quick specification of the mesh information for very small, simple meshes that are most easily written by hand.
We do not recommend using this format for anything other than these very small, simple meshes.

[image: Diagram of mesh specified in the file.]
Fig. 132 Diagram of mesh specified in the file.

// This mesh file defines a finite-element mesh composed of two
// square cells of edge length 2.
//
// Comments can appear almost anywhere in these files and are
// delimited with two slashes (//) just like in C++. All text and
// whitespace after the delimiter on a given line is ignored.
mesh = { // begin specification of the mesh
 dimension = 2 // spatial dimension of the mesh
 // Begin vertex and cell labels with 0. This is the default so
 // this next line is optional
 use-index-zero = true

 vertices = { // vertices or nodes of the finite-element cells
 dimension = 2 // spatial dimension of the vertex coordinates
 count = 6 // number of vertices in the mesh
 coordinates = { // list of vertex index and coordinates
 // the coordinates must coincide with the coordinate
 // system specified in the Mesh object
 // exactly one vertex must appear on each line
 // (excluding whitespace)
 0 -2.0 -1.0
 1 -2.0 +1.0
 2 0.0 -1.0
 3 0.0 +1.0
 4 +2.0 -1.0
 5 +2.0 +1.0
 } // end of coordinates list
 } // end of vertices

 cells = { // finite-element cells
 count = 2 // number of cells in the mesh
 num-corners = 4 // number of vertices defining the cell
 simplices = { // list of vertices in each cell
 // see Section 4.2 for diagrams giving the order for each
 // type of cell supported in PyLith
 // index of cell precedes the list of vertices for the cell
 // exactly one cell must appear on each line
 // (excluding whitespace)
 0 0 2 3 1
 1 4 5 3 2
 } // end of simplices list

 material-ids = { // associated each cell with a material model
 // the material id is specified using the index of the cell
 // and then the corresponding material id
 0 0 // cell 0 has a material id of 0
 1 2 // cell 1 has a material id of 2
 } // end of material-ids list
 } // end of cells

 // This next section lists groups of vertices that can be used
 // in applying boundary conditions to portions of the domain
 group = { // start of a group
 // the name can have whitespace, so no comments are allowed
 // after the name
 name = face +y

 // Either groups of vertices or groups of cells can be
 // specified, but currently PyLith only makes use of groups
 // of vertices
 type = vertices // ’vertices’ or ’cells’
 count = 2 // number of vertices in the group
 indices = { // list of vertex indices in the group
 // multiple vertices may appear on a line
 0 4 // this group contains vertices 0 and 4
 } // end of list of vertices
 } // end of group

// additional groups can be listed here

Points List File

This file lists the coordinates of the locations where output is requested for the OutputSolnPoints component.
The coordinate system is specified in the OutputSolnPoints component.

Comments are limited to complete lines. The default delimiter for comments
is '#', which can be changed via parameters. Additionally, the delimiter
separating values can also be customized (default is whitespace).
#
The first column is the station name. The coordinates of the points are given
in the subsequent columns.
P0 1.0 -2.0 0.0
P1 2.0 -4.0 -0.1
P2 0.0 +2.0 0.0
P3 2.5 -0.2 -0.2
P4 0.0 2.0 +0.2

Appendices

	Analytical Solutions
	Airy Stress Functions
	Example

Analytical Solutions

Airy Stress Functions

Airy stress functions provide a simple approach for solving 2D elastoplastic problems with uniform isotropic linearly elastic material properties.
They can be useful in creating tests using the Method of Manufactured Solutions.

We start with the equilibrium equation for static elasticity in Cartesian coordinates

(185)\[\begin{split}\begin{gathered}
\frac{\partial\sigma_{xx}}{\partial x} + \frac{\partial\sigma_{xy}}{\partial y} + f_x = 0 \\
\frac{\partial\sigma_{yy}}{\partial y} + \frac{\partial\sigma_{xy}}{\partial x} + f_y = 0,
\end{gathered}\end{split}\]

where \(f_x\) and \(f_y\) are the body force components in the \(x\) and \(y\) directions, respectively.
We assume the body forces can be derived from a potential \(\psi\)

(186)\[\begin{align}
f_x &= -\frac{\partial \psi}{\partial x}, \\
f_y &= -\frac{\partial \psi}{\partial y}.
\end{align}\]

We choose an Airy stress function \(\phi(x,y)\) to trivially satisfy the equilibrium equations so that

(187)\[\begin{split}\begin{aligned}
\sigma_{xx} &= \frac{\partial^{2}\phi}{\partial y^{2}} + \psi,\\
\sigma_{yy} &= \frac{\partial^{2}\phi}{\partial x^{2}} + \psi,\\
\sigma_{xy} &= -\frac{\partial^{2}\phi}{\partial x\partial y}.
\end{aligned}\end{split}\]

We must also satisfy the compatibility equations.
For plane strain, we have

(188)\[\begin{equation}
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\left(\sigma_{xx} + \sigma_{yy}\right) - \frac{1}{1-\nu}\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right) = 0.
\end{equation}\]

Substituting in the expressions for the stress components in terms of the Airy stress function leads to

(189)\[\frac{\partial^4 \phi}{\partial x^4} + \frac{\partial^4 \phi}{\partial x^2 \partial y^2} + \frac{\partial^4 \phi}{\partial y^4} + \frac{1-2\nu}{1-\nu}\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right)= 0.\]

Example

We select a second order polynomial for the Airy stress function with the form

(190)\[\begin{equation}
\phi = \frac{1}{2} a x^2 + b x y + \frac{1}{2} c y^2.
\end{equation}\]

and no body forces (\(\psi=0\)).
By inspection we see that this equation trivially satisfies the equilibrium equation (189).
Using equation (187), we have

(191)\[\begin{align}
\sigma_{xx} &= c, \\
\sigma_{yy} &= a, \\
\sigma_{xy} &= -b.
\end{align}\]

Our stress function corresponds to a uniform stress field.

Let us now consider axial extension of a rectangular block with roller boundary conditions on two sides as shown in Fig. 133.
We have

(192)\[\begin{gather}
\tau_x = \tau_0 \text{ on } x=x_1,\\
u_x = 0 \text{ on } x=x_0,\\
u_y = 0 \text{ on } y=y_0.
\end{gather}\]

The other boundaries are free surfaces.
Because \(\sigma_{yy} = \sigma_{xy} = 0\) and \(\sigma_{xx} = \tau_0\), we have \(a = b = 0\) and \(c = \tau_0\).
For plane strain the out of plane stress is given by

(193)\[\begin{equation}
\sigma_{zz} = \frac{\lambda}{2\lambda+2\mu}\left(\sigma_{xx} + \sigma_{yy}\right) = \frac{\lambda}{2\lambda+2\mu} \tau_0.
\end{equation}\]

The strain components for plane strain are

(194)\[\begin{align}
\epsilon_{xx} &= \frac{1}{2\mu}\left(\sigma_{xx} - \frac{\lambda}{3\lambda+2\mu}\left(\sigma_{xx}+\sigma_{yy}+\sigma_{zz}\right)\right), \\
%
\epsilon_{yy} &= \frac{1}{2\mu}\left(\sigma_{yy} - \frac{\lambda}{3\lambda+2\mu}\left(\sigma_{xx}+\sigma_{yy}+\sigma_{zz}\right)\right), \\
%
\epsilon_{xy} &= \frac{1}{2\mu} \sigma_{xy}.
\end{align}\]

Substituting in our expressions for the stress components leads to

(195)\[\begin{align}
\epsilon_{xx} &= \frac{\tau_0}{4\mu}\frac{\lambda+2\mu}{\lambda+\mu}, \\
\epsilon_{yy} &= -\frac{\tau_0}{4\mu}\frac{\lambda}{\lambda+\mu}, \\
\epsilon_{xy} &= 0.
\end{align}\]

The corresponding displacement field is

(196)\[\begin{align}
u_x &= \frac{\tau_0}{4\mu}\frac{\lambda+2\mu}{\lambda+\mu} x, \\
u_y &= -\frac{\tau_0}{4\mu}\frac{\lambda}{\lambda+\mu} y.
\end{align}\]

Putting everything together the solution to our boundary value problem is

(197)\[\begin{align}
\sigma_{xx} &= \tau_0, \\
\sigma_{yy} &= 0, \\
\sigma_{xy} &= 0, \\
\sigma_{zz} &= \frac{\lambda}{2\lambda+2\mu} \tau_0, \\
\epsilon_{xx} &= \frac{\tau_0}{4\mu}\frac{\lambda+2\mu}{\lambda+\mu}, \\
\epsilon_{yy} &= -\frac{\tau_0}{4\mu}\frac{\lambda}{\lambda+\mu}, \\
\epsilon_{xy} &= 0, \\
u_x &= \frac{\tau_0}{4\mu}\frac{\lambda+2\mu}{\lambda+\mu} x, \\
u_y &= -\frac{\tau_0}{4\mu}\frac{\lambda}{\lambda+\mu} y.
\end{align}\]

[image: Geometry for Airy stress function axial extension example.]
Fig. 133 Diagram of axial extension example for the Airy stress function.
We constraint the normal degree of freedom on the \(x=x_0\) and \(y=y_0\) boundaries and apply a uniform normal traction \(\tau_0\) on \(x=x_1\).

Developer Guide

Under construction.

This section is still a work in progress.

	Contributing to PyLith
	Coding Style
	General guidelines

	Formatting source files

	Error Checking

	C/C++ style
	Object Declaration Files

	Object Implementation Files

	Python style

	Git Workflow
	Keeping Your Fork in Sync with geodyamics/pylith
	Set the upstream repository

	Updating Your Local Branch To Match The Upstream Repository

	Creating a New Feature Branch

	Staging, Committing, and Pushing Changes

	Keeping a feature branch in sync with branch main

	Making Pull Requests

	Adding Remotes For Accessing Other PyLith Forks

	Rebuilding PETSc and PyLith
	Rebuilding PETSc

	Rebuilding PyLith
	Overview

	Updating your fork

	Makefiles

	Build Targets

	Code Layout
	Directory Structure

	Code Structure
	Legend for class diagrams

	Application

	Problem

	Physics and Finite-Element Objects

	Materials

	Boundary Conditions

	Interior Interfaces (Faults)

	Mesh Importing

	Output

	PyLith Application Flow
	Time-Dependent Problem

	Boundary between Python and C++

	SWIG Interface Files

	PETSc Finite-Element Implementation
	DMPlex
	Point Depth and Height

	PetscSection and PetscVec

	Integration

	Projection

	Pointwise functions (kernels)

	Adding New Governing Equations and/or Bulk Rheologies
	Overview

	Python

	C++

	Documentation
	Building the documentation
	Prerequisites

	Generating the documentation

	MyST Quick reference
	Style guide

	Headings

	Heading 2
	Heading 3
	Heading 4

	Admonitions

	Lists
	Itemized lists

	Definition lists

	Field lists

	Code blocks

	Tables

	Figures

	Math

	Citations

	Table of contents

	Contributing to the documentation

	Git Quick Reference
	Break commit into multiple commits

	Update from upstream

	Rebase branch off main

	Branches
	Delete branches

	Rename local branch

	Show merged/unmerged branches

	Testing
	C++ unit tests
	CppUnit macros

	Method of Manufactured Solutions
	Debugging residual errors

	Debugging Jacobian errors

	Example

	Running C++ unit tests and MMS tests
	Running C++ unit tests

	Running MMS tests
	Using the debugger

	Using valgrind

	Python unit tests

	Full-scale tests
	Command line arguments

	Using the debugger

	Using valgrind

	Example

	Debugging tools
	VS Code integration
	C++ unit test

	MMS test

	PyLith simulation

	Debugger quick reference

	Valgrind quick reference

	Viewing fields
	Viewing differences

	Running tests in CI Docker containers

Contributing to PyLith

	Coding Style
	General guidelines

	Formatting source files

	Error Checking

	C/C++ style
	Object Declaration Files

	Object Implementation Files

	Python style

	Git Workflow
	Keeping Your Fork in Sync with geodyamics/pylith
	Set the upstream repository

	Updating Your Local Branch To Match The Upstream Repository

	Creating a New Feature Branch

	Staging, Committing, and Pushing Changes

	Keeping a feature branch in sync with branch main

	Making Pull Requests

	Adding Remotes For Accessing Other PyLith Forks

	Rebuilding PETSc and PyLith
	Rebuilding PETSc

	Rebuilding PyLith
	Overview

	Updating your fork

	Makefiles

	Build Targets

	Code Layout
	Directory Structure

	Code Structure
	Legend for class diagrams

	Application

	Problem

	Physics and Finite-Element Objects

	Materials

	Boundary Conditions

	Interior Interfaces (Faults)

	Mesh Importing

	Output

	PyLith Application Flow
	Time-Dependent Problem

	Boundary between Python and C++

	SWIG Interface Files

	PETSc Finite-Element Implementation
	DMPlex
	Point Depth and Height

	PetscSection and PetscVec

	Integration

	Projection

	Pointwise functions (kernels)

	Adding New Governing Equations and/or Bulk Rheologies
	Overview

	Python

	C++

	Documentation
	Building the documentation
	Prerequisites

	Generating the documentation

	MyST Quick reference
	Style guide

	Headings

	Heading 2
	Heading 3
	Heading 4

	Admonitions

	Lists
	Itemized lists

	Definition lists

	Field lists

	Code blocks

	Tables

	Figures

	Math

	Citations

	Table of contents

	Contributing to the documentation

	Git Quick Reference
	Break commit into multiple commits

	Update from upstream

	Rebase branch off main

	Branches
	Delete branches

	Rename local branch

	Show merged/unmerged branches

Coding Style

There are a number of standard coding styles for programming languages, notably PEP8 for Python. For PyLith, we try to be consistent in naming conventions across Python and C++ while following a subset of the conventions used in PETSc and PEP8 with documentation styles consistent with Doxygen.

Important

We use 4 spaces for indentation. Configure your editor to use spaces instead of tabs.

General guidelines

	Naming conventions

	Use self-documenting names.

	Avoid single letter variables. Choose meaningful names that will be found via searches across single or multiple files (e.g., grep).

	Class names are generally nouns and methods are verbs.

	Class names use upper camel case, e.g., TimeDependent.

	Public method names use camel case, e.g., computeRHSResidual().

	Protected and private method names use camel case preceded by an underscore, e.g., _setFEKernelsRHSResidual().

	In C++ data members are private and use camel case preceded by an underscore, e.g., _gravityField.

	In Python data members are public and use camel case, e.g., self.gravityField.

	Local variables use camel case, e.g., numIntegrators.

	Comments

	List authors, copyright, and license info at the very beginning of every file.

	For every class method, describe its function and include a description for each argument. For Python this is done in the docstring of the method, and for C++ this is done in a doxygen style comment immediately before the method declaration in the header file.

	Document nontrivial algorithms and any assumptions.

	Error checking

	PyLith should never crash without an error message.

	All user errors should be trapped as early as possible and reported with an informative error message by throwing an appropriate exception. If possible, suggest ways to correct the error.

	Messages for internal errors should indicate the location in the code where the error was trapped.

	All pointers should be checked for NULL values before use. Usually we use assert() to do this.

	Check the return values for all calls to functions in external libraries. For PETSc functions, we use PYLITH_CHECK_ERROR(returnValue).

	Testing

	All C++ methods should be covered by unit tests.

	All governing equations should be covered by Method of Manufactured solution tests.

	All functionality should be covered by full-scale tests.

Formatting source files

We use autopep8 and uncrustify to format Python and C/C++ source files, respectively.
The corresponding configuration files are autopep8.cfg and uncrustify.cfg in the developer directory.
The Python script developer/format_source.py is a handy utility for calling autopep8 and uncrustify with the appropriate arguments and formatting multiple files.

Tip

We highly recommend using an integrated development environment, such as Visual Studio Code, that allow uncrustify and autopep8 to automatically format all C/C++ and Python source files.

Listing 215 Formatting Python and C++ source code using format_source.py. autopep8 and uncrustify must be in the current path.

Format a C++ file.
developer/format_source.py --cplusplus=libsrc/pylith/materials/Material.cc

Format all C++ files in the 'libsrc/pylith/materials' directory.
developer/format_source.py --cplusplus=libsrc/pylith/materials/*.cc

Format a Python file.
developer/format_source.py --python=pylith/materials/Material.py

Format all Python files in the 'pylith/materials' directory.
developer/format_source.py --python=pylith/materials/*.py

Error Checking

Our philosophy is that PyLith should never crash without an error message.
If it encounters a fatal error, then it should generate an appropriate error message and abort.
In C++ we throw std::runtime_error exceptions for errors resulting from user input and std::logic_error exceptions for internal inconsistencies or logic errors.
In Python we use standard exception objects.

Additional protections against crashing include: using asserts to verify pointers are non-null before using them and using the PYLITH_CHECK_ERROR macro to check the return value after every call to a PETSc function.

Listing 216 Example of using assert()

assert(_solution); // Verify _solution is not NULL.

// Initialize integrators.
const size_t numIntegrators = _integrators.size();
for (size_t i = 0; i < numIntegrators; ++i) {
 assert(_integrators[i]); // Verify _integrators[i] is not NULL.
 _integrators[i]->initialize(*_solution);
} // for

Tip

When we build the code for production runs, we usually configure with CPPFLAGS=-DNDEBUG to remove assert() calls.

Listing 217 Example of using PYLITH_CHECK_ERROR macro.

PetscErrorCode err = TSGetTimeStep(ts, &dt);PYLITH_CHECK_ERROR(err);

In combination with the above procedures, we also make use of the Pyre journals to display warnings and errors to facilitate debugging.
The journals provide the file name and line number along with the message.
By default, Pyre journals for errors are turned on and those for warnings and debugging are turned off.

Listing 218 Example of using Pyre journals and standard exceptions.

switch (bitUse) {
case 0x1:
 _bcKernel = pylith::fekernels::TimeDependentFn::initial_scalar;
 break;
case 0x2:
 _bcKernel = pylith::fekernels::TimeDependentFn::rate_scalar;
 break;
case 0x0:
 PYLITH_COMPONENT_WARNING("Dirichlet BC provides no constraints.");
 break;
default:
 PYLITH_COMPONENT_LOGICERROR("Unknown combination of flags for Dirichlet BC terms "
 << "(useInitial="<<_useInitial<<", useRate="<<_useRate<<").");
} // switch

C/C++ style

Object Declaration Files

C++ object declaration (header) files use the .hh suffix.
C header files use the .h suffix.
The following code excerpt demonstrates the conventions we use in formatting header files and including comments.

Important

All declarations of class methods should include a description of what the method does and a description of each argument and the return value if it is not void.

Listing 219 Sample C++ declaration (header) file.

// ===
// This code is part of PyLith, developed through the Computational Infrastructure
// for Geodynamics (https://github.com/geodynamics/pylith).
//
// Copyright (c) 2010-2023, University of California, Davis and the PyLith Development Team.
// All rights reserved.
//
// See https://mit-license.org/ and LICENSE.md and for license information.
// ===

/* ANNOTATION: Next list the filename with the relative path of the file
 * along with a brief description.
 */

/**
 * @file libsrc/problems/Problem.hh
 *
 * @brief C++ object that manages formulating the equations.
 */

// ANNOTATION: Use full namespace in header guard.
#if !defined(pylith_problems_problem_hh)
#define pylith_problems_problem_hh

/* ANNOTATION: Includes.
 *
 * 1. Header file for forward declaration of class
 * 2. Header file for parent classes
 * 3. Local forward declarations
 * 4. Local header files
 * 5. Other header files
 * 6. System header files
 */
#include "problemsfwd.hh" // forward declarations

#include "pylith/utils/PyreComponent.hh" // ISA PyreComponent

#include "pylith/feassemble/feassemblefwd.hh" // HASA IntegratorPointwise
#include "pylith/topology/topologyfwd.hh" // USES Mesh, Field
#include "pylith/meshio/meshiofwd.hh" // HASA OutputManager
#include "spatialdata/units/unitsfwd.hh" // HASA Nondimensional
#include "spatialdata/spatialdb/spatialdbfwd.hh" // HASA GravityField

#include "pylith/utils/petscfwd.h" // USES PetscVec, PetscMat

#include "pylith/utils/array.hh" // HASA std::vector

/* ANNOTATION: Provide description of class.
 */

/** Reform the Jacobian and residual for the problem.
 *
 * We cast the problem in terms of F(t,s,\dot{s}) = G(t,s), s(t0) = s0.
 *
 * In PETSc time stepping (TS) notation, G is the RHS, and F is the I
 * function (which we call the LHS).
 *
 */
class pylith::problems::Problem : public pylith::utils::PyreComponent {
 /* ANNOTATION: Order of declarations is:
 *
 * 1. Friend classes
 * 2. Public enums
 * 3. Public structs
 * 4. Public methods
 * 5. Protected methods
 * 6. Private methods
 * 7. Protected members
 * 8. Private members
 * 9. Methods not implemented
 *
 * Within each group, we generally order the methods by:
 * 1. Constructor/destructors
 * 2. Accessors
 * 3. Other methods
 *
 * Use the full namespace when declaring data members and method
 * arguments to avoid ambiguity.
 *
 * Method arguments are listed one per line.
 *
 * Include opening braces at the end of a line. Use a comment to
 * document all closing braces.
 *
 * Before every member method, describe what the method does and
 * include a description for every argument. We use Doxygen
 * syntax.
 */

 friend class TestProblem; // unit testing

 // PUBLIC ENUM //
public:

 enum SolverTypeEnum {
 LINEAR, // Linear solver.
 NONLINEAR, // Nonlinear solver.
 }; // SolverType

 // PUBLIC MEMBERS ///
public:

 // Constructor
 Problem(void);

 /// Destructor
 virtual ~Problem(void);

 /* We call the deallocate method before calling PetscFinalize() to
 * deallocate any memory allocated using PETSc. In general, the
 * destructor will simply call deallocate().
 */

 /// Deallocate PETSc and local data structures.
 void deallocate(void);

 /** Set solver type.
 *
 * @param[in] value Solver type.
 */
 void solverType(const SolverTypeEnum value);

 /** Get solver type.
 *
 * @returns Solver type.
 */
 SolverTypeEnum solverType(void) const;

 /** Set manager of scales used to nondimensionalize problem.
 *
 * @param[in] dim Nondimensionalizer.
 */
 void normalizer(const spatialdata::units::Nondimensional& dim);

 /** Set gravity field.
 *
 * @param[in] g Gravity field.
 */
 void gravityField(spatialdata::spatialdb::GravityField* const g);

 /** Set solution field.
 *
 * @param[in] field Solution field.
 */
 void solution(pylith::topology::Field* field);

 /** Set handles to integrators.
 *
 * @param[in] integratorArray Array of integrators.
 * @param[in] numIntegrators Number of integrators.
 */
 void integrators(pylith::feassemble::IntegratorPointwise* integratorArray[],
 const int numIntegrators);

 /** Do minimal initialization.
 *
 * @param mesh Finite-element mesh.
 */
 virtual
 void preinitialize(const pylith::topology::Mesh& mesh);

 /** Verify configuration.
 *
 * @param[in] materialIds Array of material ids.
 * @param[in] numMaterials Size of array (number of materials).
 *
 */
 virtual
 void verifyConfiguration(int* const materialIds,
 const int numMaterials) const;

 /** Set solution values according to constraints (Dirichlet BC).
 *
 * @param[in] t Current time.
 * @param[in] solutionVec PETSc Vec with current global view of solution.
 * @param[in] solutionDotVec PETSc Vec with current global view of time derivative of solution.
 */
 void setSolutionLocal(const PylithReal t,
 PetscVec solutionVec,
 PetscVec solutionDotVec);

 /** Compute RHS residual, G(t,s) and assemble into global vector.
 *
 * @param[out] residualVec PETSc Vec for residual.
 * @param[in] t Current time.
 * @param[in] dt Current time step.
 * @param[in] solutionVec PETSc Vec with current trial solution.
 */
 void computeRHSResidual(PetscVec residualVec,
 const PetscReal t,
 const PetscReal dt,
 PetscVec solutionVec);

 // PROTECTED MEMBERS //
protected:

 /* ANNOTATION: Use pointers to hide implementation details and speed up compilation.
 */

 pylith::topology::Field* _solution; ///< Handle to solution field.
 pylith::topology::Field* _residual; ///< Handle to residual field.

 spatialdata::units::Nondimensional* _normalizer; ///< Nondimensionalization of scales.
 spatialdata::spatialdb::GravityField* _gravityField; ///< Gravity field.
 std::vector<pylith::feassemble::IntegratorPointwise*> _integrators; ///< Array of integrators.
 SolverTypeEnum _solverType; ///< Problem (solver) type.

 // NOT IMPLEMENTED //
private:

 /* ANNOTATION: Declare expensive, fragile copy methods private, so using them
 * fails at compile time with an error.
 */

 Problem(const Problem&); ///< Not implemented
 const Problem& operator=(const Problem&); ///< Not implemented

}; // Problem

#endif // pylith_problems_problem_hh

// End of file

Object Implementation Files

C++ object implementation files use the .cc suffix.
Inline implementation files use the .icc suffix and are included from the definition (header) files.
C implementation files use the .c suffix.

To facilitate debugging and error messages, we use the following
macros:

	PYLITH_METHOD_BEGIN
	This macro allows line numbers of source files to be included in PETSc error messages. Use this macro at the beginning of all methods using any PETSc routines as well as most other methods. We don’t use this macro in destructors because many of them are called after PetscFinalize. We also do not use this macro in trivial or inline methods that do not call any PETSc routines.

	PYLITH_METHOD_END
	Use the macro at the end of all methods that begin with PYLITH_METHOD_BEGIN and return void.

	PYLITH_RETURN_END
	Use this macro at the end of all methods that begin with PYLITH_METHOD_BEGIN and return non-void values.

	PYLITH_CHECK_ERROR
	Use this macro after every call to a PETSc function to check the return value.

	PYLITH_JOURNAL_DEBUG
	Use this macro immediately after PYLITH_METHOD_BEGIN in methods of all objects that inherit from GenericComponent.

	PYLITH_COMPONENT_DEBUG
	Use this macro immediately after PYLITH_METHOD_BEGIN in methods of all objects that inherit from PyreComponent.
Non-abstract classes should call PyreComponent::setName() in the constructor.
We recommend using a static data member for the name with the lowercase name matching the Pyre component, e.g., “timedependent” for the C++ TimeDependent object.

Listing 220 Sample C++ definition (implementation) file.

// ===
// This code is part of PyLith, developed through the Computational Infrastructure
// for Geodynamics (https://github.com/geodynamics/pylith).
//
// Copyright (c) 2010-2023, University of California, Davis and the PyLith Development Team.
// All rights reserved.
//
// See https://mit-license.org/ and LICENSE.md and for license information.
// ===

/* ANNOTATION: Order of including header files is:
 * 1. portinfo: (stuff from configure)
 * 2. Header file for this class.
 * 3. Header files for local classes.
 * 4. Header files for classes in other libraries.
 * 5. Standard header files.
 *
 * List why each header file is included (USES/HASA/HOLDSA).
 *
 * Order of method implementations should match header file.
 *
 * For each method:
 * 1. Return values should go on previous line.
 * 2. Put each method argument on a separate line.
 */
#include <portinfo>

#include "Problem.hh" // implementation of class methods

#include "pylith/topology/Mesh.hh" // USES Mesh
#include "pylith/topology/Field.hh" // USES Field

#include "pylith/feassemble/IntegratorPointwise.hh" // USES IntegratorPointwise

#include "pylith/utils/error.hh" // USES PYLITH_CHECK_ERROR
#include "pylith/utils/journals.hh" // USES PYLITH_COMPONENT_*

#include <cassert> // USES assert()
#include <typeinfo> // USES typeid()

// --
// Constructor
pylith::problems::Problem::Problem() :
 _solution(NULL),
 _solutionDot(NULL),
 _residual(NULL),
 _jacobianLHSLumpedInv(NULL),
 _normalizer(NULL),
 _gravityField(NULL),
 _integrators(0),
 _constraints(0),
 _outputs(0),
 _solverType(LINEAR) {}

// --
// Destructor
pylith::problems::Problem::~Problem(void) {
 deallocate();
} // destructor

// --
// Deallocate PETSc and local data structures.
void
pylith::problems::Problem::deallocate(void) {
 PYLITH_METHOD_BEGIN;

 _solution = NULL; // Held by Python. :KLUDGE: :TODO: Use shared pointer.
 delete _solutionDot; _solutionDot = NULL;
 delete _residual; _residual = NULL;
 delete _jacobianLHSLumpedInv; _jacobianLHSLumpedInv = NULL;
 delete _normalizer; _normalizer = NULL;
 _gravityField = NULL; // Held by Python. :KLUDGE: :TODO: Use shared pointer.

 PYLITH_METHOD_END;
} // deallocate

// --
// Set problem type.
void
pylith::problems::Problem::solverType(const SolverTypeEnum value) {
 PYLITH_COMPONENT_DEBUG("Problem::solverType(value="<<value<<")");

 _solverType = value;
} // solverType

// --
// Get problem type.
pylith::problems::Problem::SolverTypeEnum
pylith::problems::Problem::solverType(void) const {
 return _solverType;
} // solverType

// --
// Set manager of scales used to nondimensionalize problem.
void
pylith::problems::Problem::normalizer(const spatialdata::units::Nondimensional& dim) {
 PYLITH_COMPONENT_DEBUG("Problem::normalizer(dim="<<typeid(dim).name()<<")");

 if (!_normalizer) {
 _normalizer = new spatialdata::units::Nondimensional(dim);
 } else {
 *_normalizer = dim;
 } // if/else
} // normalizer

// --
// Set gravity field.
void
pylith::problems::Problem::gravityField(spatialdata::spatialdb::GravityField* const g) {
 PYLITH_COMPONENT_DEBUG("Problem::gravityField(g="<<typeid(*g).name()<<")");

 _gravityField = g;
} // gravityField

// --
// Set solution field.
void
pylith::problems::Problem::solution(pylith::topology::Field* field)
{ // solution
 PYLITH_COMPONENT_DEBUG("Problem::solution(field="<<typeid(*field).name()<<")");

 _solution = field;
} // solution

// --
// Set integrators over the mesh.
void
pylith::problems::Problem::integrators(pylith::feassemble::IntegratorPointwise* integratorArray[],
 const int numIntegrators) {
 PYLITH_METHOD_BEGIN;
 PYLITH_COMPONENT_DEBUG("Problem::integrators("<<integratorArray<<", numIntegrators="<<numIntegrators<<")");

 assert((!integratorArray && 0 == numIntegrators) || (integratorArray && 0 < numIntegrators));

 _integrators.resize(numIntegrators);
 /* Declare loop variables inline. Always use braces at begin/end
 * of if and for statements.
 */
 for (int i = 0; i < numIntegrators; ++i) {
 _integrators[i] = integratorArray[i];
 } // for

 PYLITH_METHOD_END;
} // integrators

// --
// Do minimal initialization.
void
pylith::problems::Problem::preinitialize(const pylith::topology::Mesh& mesh) {
 PYLITH_METHOD_BEGIN;
 PYLITH_COMPONENT_DEBUG("Problem::preinitialzie(mesh="<<typeid(mesh).name()<<")");

 assert(_normalizer);

 const size_t numIntegrators = _integrators.size();
 for (size_t i = 0; i < numIntegrators; ++i) {
 assert(_integrators[i]);
 _integrators[i]->normalizer(*_normalizer);
 _integrators[i]->gravityField(_gravityField);
 } // for

 PYLITH_METHOD_END;
} // preinitialize

// --
// Verify configuration.
void
pylith::problems::Problem::verifyConfiguration(int* const materialIds,
 const int numMaterials) const {
 PYLITH_METHOD_BEGIN;
 PYLITH_COMPONENT_DEBUG("Problem::verifyConfiguration(materialIds="<<materialIds<<", numMaterials="<<numMaterials<<")");

 assert(_solution);

 // Check to make sure material-id for each cell matches the id of a material.
 pylith::topology::MeshOps::checkMaterialIds(_solution->mesh(), materialIds, numMaterials);

 // Check to make sure integrators are compatible with the solution.
 const size_t numIntegrators = _integrators.size();
 for (size_t i = 0; i < numIntegrators; ++i) {
 assert(_integrators[i]);
 _integrators[i]->verifyConfiguration(*_solution);
 } // for

 PYLITH_METHOD_END;
} // verifyConfiguration

// --
// Set solution values according to constraints (Dirichlet BC).
void
pylith::problems::Problem::setSolutionLocal(const PylithReal t,
 PetscVec solutionVec,
 PetscVec solutionDotVec) {
 PYLITH_METHOD_BEGIN;
 PYLITH_COMPONENT_DEBUG("setSolutionLocal(t="<<t<<", solutionVec="<<solutionVec<<", solutionDotVec="<<solutionDotVec<<")");

 // Update PyLith view of the solution.
 assert(_solution);
 _solution->scatterVectorToLocal(solutionVec);

 if (solutionDotVec) {
 if (!_solutionDot) {
 _solutionDot = new pylith::topology::Field(_solution->mesh());
 _solutionDot->cloneSection(*_solution);
 _solutionDot->setLabel("solutionDot");
 } // if
 _solutionDot->scatterVectorToLocal(solutionDotVec);
 } // if

 PYLITH_METHOD_END;
} // setSolutionLocal

// --
// Compute RHS residual for G(t,s).
void
pylith::problems::Problem::computeRHSResidual(PetscVec residualVec,
 const PylithReal t,
 const PylithReal dt,
 PetscVec solutionVec) {
 PYLITH_METHOD_BEGIN;
 PYLITH_COMPONENT_DEBUG("Problem::computeRHSResidual(t="<<t<<", dt="<<dt<<", solutionVec="<<solutionVec<<", residualVec="<<residualVec<<")");

 assert(residualVec);
 assert(solutionVec);
 assert(_solution);

 // Update PyLith view of the solution.
 PetscVec solutionDotVec = NULL;
 setSolutionLocal(t, solutionVec, solutionDotVec);

 // Sum residual contributions across integrators.
 _residual->zeroLocal();
 const size_t numIntegrators = _integrators.size();
 assert(numIntegrators > 0); // must have at least 1 integrator
 for (size_t i = 0; i < numIntegrators; ++i) {
 _integrators[i]->computeRHSResidual(_residual, t, dt, *_solution);
 } // for

 // Assemble residual values across processes.
 PetscErrorCode err = VecSet(residualVec, 0.0); PYLITH_CHECK_ERROR(err); // Move to TSComputeIFunction()?
 _residual->scatterLocalToVector(residualVec, ADD_VALUES);

 PYLITH_METHOD_END;
} // computeRHSResidual

// End of file

Python style

Listing 221 Sample Python source code.

===
This code is part of PyLith, developed through the Computational Infrastructure
for Geodynamics (https://github.com/geodynamics/pylith).
#
Copyright (c) 2010-2023, University of California, Davis and the PyLith Development Team.
All rights reserved.
#
See https://mit-license.org/ and LICENSE.md and for license information.
===
#
ANNOTATION: Next list the filename with the relative path of the file along with a
brief description.

@file pylith/problems/Problem.py
#
@brief Python abstract base class for crustal dynamics problems.

ANNOTATION: Order of imports should be
1. standard modules
2. other modules
3. PyLith modules (parent classes first).
#
The SWIG interface to the C++ object is imported as ModuleProblem in
order to avoid clashing with the Python Problem class.

from pylith.utils.PetscComponent import PetscComponent
from .problems import Problem as ModuleProblem

ITEM FACTORIES ///

ANNOTATION: Define any factory methods needed in the Pyre inventory.
def materialFactory(name):
 """
 Factory for material items.
 """
 from pyre.inventory import facility
 from pylith.materials.ElasticityPlaneStrain import ElasticityPlaneStrain
 return facility(name, family="material", factory=IsotropicLinearElasticityPlaneStrain)

class Problem(PetscComponent, ModuleProblem):
 """Python abstract base class for crustal dynamics problems.

 FACTORY: problem. List the factory if one exists.
 """

 import pyre.inventory

 # ANNOTATION: Usually, we put all arguments on a single line. If the
 # function call is really long, break the arguments into
 # logical pieces, usually one argument per line.
 solverTypeStr = pyre.inventory.str(
 "solver",
 default="linear",
 validator=pyre.inventory.choice(["linear", "nonlinear"])
)
 solverTypeStr.meta['tip'] = "Type of solver to use ['linear', 'nonlinear']."

 from Solution import Solution
 solution = pyre.inventory.facility("solution", family="solution", factory=Solution)
 solution.meta['tip'] = "Solution field for problem."

 from pylith.materials.Homogeneous import Homogeneous
 materials = pyre.inventory.facilityArray(
 "materials",
 itemFactory=materialFactory,
 factory=Homogeneous
)
 materials.meta['tip'] = "Materials in problem."

 # PUBLIC METHODS ///

 def __init__(self, name="problem"):
 """Constructor.
 """
 PetscComponent.__init__(self, name, facility="problem")

 # ANNOTATION: Initialize all data members not in the inventory.
 self.mesh = None
 return

 def preinitialize(self, mesh):
 """Do minimal initialization.
 """
 # ANNOTATION: On process 0 only, print progress information to info journal.
 from pylith.mpi.Communicator import mpi_comm_world
 comm = mpi_comm_world()
 if 0 == comm.rank:
 self._info.log("Performing minimal initialization before verifying configuration.")

 # ANNOTATION: Pass information to corresponding C++ object.
 #
 # For all calls to the C++ interaface, call using the
 # class name and pass self as an argument to make it clear
 # that this is calling a C++ method and not a Python method.
 ModuleProblem.setIdentifier(self, self.aliases[-1])

 if self.solverTypeStr == "linear":
 ModuleProblem.solverType(self, ModuleProblem.LINEAR)
 elif self.solverTypeStr == "nonlinear":
 ModuleProblem.solverType(self, ModuleProblem.NONLINEAR)
 else:
 raise ValueError("Unknown solver type '%s'." % self.solverTypeStr)

 # Do minimal setup of solution.
 self.solution.preinitialize(mesh, self.normalizer)
 ModuleProblem.solution(self, self.solution.field)

 # Preinitialize materials
 for material in self.materials.components():
 material.preinitialize(mesh)

 ModuleProblem.preinitialize(self, mesh)
 return

 def initialize(self):
 """Initialize integrators and constraints.
 """
 # On process 0 only, print progress information to info journal.
 from pylith.mpi.Communicator import mpi_comm_world
 comm = mpi_comm_world()
 if 0 == comm.rank:
 self._info.log("Initializing problem.")

 ModuleProblem.initialize(self)
 return

 def run(self, app):
 """Solve the problem.
 """
 # Generate error if method is not implemented in child class.
 raise NotImplementedError("run() not implemented.")
 return

 # PRIVATE METHODS //

 def _configure(self):
 """Set data members based using inventory.
 """
 PetscComponent._configure(self)

 return

FACTORIES //

ANNOTATION: Define any facility factories.
def problem():
 """
 Factory associated with Problem.
 """
 return Problem()

End of file

Git Workflow

We use the Git version control system https://git-scm.com with a central GitHub repository https://github.com/geodynamics/pylith for development.
We will refer to this central repository as the geodynamics/pylith repository.
Only the PyLith maintainers have write access to the geodynamics/pylith repository; everyone else is limited to read access.
Contributions from the community are incorporated into the geodynamics/pylith repository via pull requests.

Currently, the PyLith maintainers use the
Feature Branch Workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow].
Each new feature is added on its own branch, and once it is implemented, tested, and documented, it is merged to the main branch.

If you wish to contribute to PyLith development, then you should follow the Forking Workflow [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow] illustrated in Figures git-repositories and git-branch.
You fork the geodynamics/pylith repository so that you have a copy of the repository for your changes.
Each new, independent feature you develop should be done in a separate branch.
Large feature contributions should be broken up into multiple phases, where each phase provides a working version that passes all of its tests.
Each phase corresponds to a separate branch that is merged back into the geodynamics/pylith repository (usually the main branch) via a pull request [https://help.github.com/articles/about-pull-requests/] when it is completed.

[image:]

Fig. 134 Overview of repositories for the Git forking workflow used in PyLith development.
The main repository is geodynamics/pylith at GitHub.
Developers create a fork of that repository under their own GitHub account (e.g., saradeveloper), which is cloned to their local computer.
Changes and additions to the code are committed to the repository on the local computer, which are pushed to the developer’s GitHub account.
Once a development task is completed, a developer is encouraged to contribute the changes and additions to the main repository via pull requests.

[image:]

Fig. 135 Overview of repositories and branches for the Git forking workflow used in PyLith development.
You keep the main branch on your local machine in sync with the main branch in the community repository; we never use the main branch in your GitHub repository.
From the main branch on your local machine, you create a feature branch, e.g., feature-powerlaw, to complete a single task such as adding a feature, fixing a bug, or making an improvement to the documentation.
You should break up the changes into several steps, which are saved locally as commits.
The commits are pushed to your repository on GitHub for backup or syncing across multiple computers.
Once the task is completed, you submit a pull request to have the changes merged to the main branch in the community repository.
Once the pull request is merged, you update your local main branch from the community repository and then push the changes to your repository on GitHub.

There are two steps to setting up a copy of the PyLith repository that you can use for development under the Forking Workflow:

	Create a GitHub account.

	Fork the geodynamics/pylith repository.

This will create a copy of the PyLith repository in your GitHub account.
You can make changes to this copy and, when you are ready to contribute changes back to the geodynamics/pylith repository, you will create a pull request.

Important

Create a personal access token for your GitHub account.
See GitHub Docs: Creating a personal access token [https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token] for more information.
This provides additional security and eliminates the need for you to enter your username and password whenever you push to your repository.

We strongly recommend that you setup your GitHub account to use two-factor authentication.
See GitHub Docs: Securing your account with two-factor authentication [https://help.github.com/articles/securing-your-account-with-two-factor-authentication-2fa/].

You should also sign your commits using GPG or S/MIME.
See GitHub Docs: Managing commit signature verification [https://docs.github.com/en/github/authenticating-to-github/managing-commit-signature-verification] for more information.

Keeping Your Fork in Sync with geodyamics/pylith

See git-branch for the diagram of the workflow associated with these steps.

Set the upstream repository

For each clone of your fork (each computer with a local copy of your fork), you need to create a link to the “upstream” geodynamics/pylith repository.
This allows you to keep your repository in sync with the community repository.
If you are using the PyLith Docker development container and followed all of the installation instructions, then you already completed this step; you can list the current remotes for your fork to verify.

Listing 222 Setting upstream repository

List the current remotes for your fork.
git remote -v
Output
origin git@github.com/YOUR_GITHUB_USERNAME/pylith.git (fetch)
origin git@github.com/YOUR_GITHUB_USERNAME/pylith.git (push)

Set the link to the remote upstream repository
git remote add upstream https://github.com/geodynamics/pylith.git

Verify the upstream repository has been added.
git remote -v
Output:
origin git@github.com/YOUR_GITHUB_USERNAME/pylith.git (fetch)
origin git@github.com/YOUR_GITHUB_USERNAME/pylith.git (push)
upstream https://github.com/geodynamics/pylith.git (fetch)
upstream https://github.com/geodynamics/pylith.git (push)

Updating Your Local Branch To Match The Upstream Repository

Make sure all of your local changes have been committed or stashed [https://git-scm.com/docs/git-stash].

Listing 223 Updating the local main branch to match the upstream main branch..

Check out the 'main' branch
git checkout main

Update your local version of the upstream repository, pruning any branches that no longer exist.
git fetch upstream -p

Update your local `main` branch to match the upstream `main`.
git pull

Important

The main branch should only be changed using this procedure.
You should never merge your local branches to your main branch or commit local changes to your main branch.
This ensures that your main branch stays in sync with the geodynamics/pylith main branch.
If you need to test integration of multiple feature branches, it is best to create a new branch for that purpose.

Listing 224 Updating a branch that has been rebased or otherwise had its history changed in the upstream repository.

Switch to the `main` branch and delete your local copy of the upstream "project" branch.
git checkout main
git branch -D hackathon/project

Update your local version of the upstream repository
git fetch upstream

Checkout the branch again, tracking the upstream repository.
git checkout -b hackathon/project --track upstream/hackathon/project

Tip

You should only make commits on your local feature branches.
These are also the only branches that you should push to your GitHub repository.

We strongly recommend never pushing branches from the upstream repository to your GitHub repository.

Creating a New Feature Branch

Before creating a new feature branch, you should update your local main branch (or hackathon/project branch to match the upsteram corresponding upstream branch as described in Updating Your Local Branch To Match The Upstream Repository.

Listing 225 Creating a feature branch

Start from the current development branch (usually "main")
git checkout main

Make sure it is up to date.
git pull

Create a new branch from 'main', substituting appropriate names for
USERNAME and BRANCH.
git checkout -b USERNAME/BRANCH

Examples
git checkout -b saradeveloper/feature-powerlaw-rheology
git checkout -b saradeveloper/fix-fault-output

Tip

If you are implementing a feature that requires a significant amount of code development, we strongly recommend that you break the implementation into pieces that can each be tested, documented, and integrated into the PyLith main branch.
Another approach (equally valid) is to create a series of feature branches implementing the different phases that all get merged into the main feature branch; the main feature branch would then be merged into the main branch via a pull request.

Tip

Feature branches are a great way to experiment with an implementation.
You can create a feature branch and if you decide the implementation is headed in the wrong direction, you can simply create a new feature branch from your original starting point and delete the bad feature branch.

Staging, Committing, and Pushing Changes

The Git add and commit commands are used to stage and commit changes to a branch.
Staging refers to assembling the list of files to include in a commit.
A commit adds code changes to the current branch along with a message describing the changes.
A commit changes only the current branch on your local machine.
In order to update your GitHub repository you need to push your changes.
See the Git documentation for details about these commands.
There are Git interfaces built into a number of editors and integrated development environments (IDEs), as well as standalone graphical user interfaces to Git.

Tip

Commit messages should explain changes.
Keep the first line under 80 characters, if possible, and include an empty line between the first line and any additional lines that provide more detailed explanations.

The commit messages provide important documentation on why code is changed.
Your future self and your fellow developers will appreciate good explanations of all changes.

Warning

If you have multiple branches, make sure you are on the correct branch before making commits.

Keeping a feature branch in sync with branch main

The PyLith main branch may change while you are working on a feature branch.
In some cases it might have a new feature that you do not need and does not affect your work, in which case it does not matter whether you incorporate those changes into your feature branch.
However, in other cases, there might be an important bugfix or feature that you want to use in your feature branch while you are working on it.
The recommended way to incorporate these changes is to rebase your feature branch relative to the PyLith main branch.

Rebasing essentially replays your commits on top of the commits in the other branch.
With interactive rebasing you can also rewrite the commit history of a feature branch by reordering, dropping, and/pr combining (squashing) commits.
See Git: Rewriting History [https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History] for more information.

Danger

Rebasing and force pushing can cause irreversible damage to your repository.
We recommend practicing rebasing using a toy repository before attempting to rebase with real code.

The primary steps to rebasing with respect to the PyLith main branch are:

	Commit or stash any changes so that you do not have any modified files.

	Start the interactive rebasing by running git rebase -i main.

	Edit the commit history as desired.

	Fix any conflicts during the rebase.

	Verify the rebase is correct by running tests, etc.

	Force push the branch using git push --force.

Danger

After you have rebased but before doing a forced push, running git status will report something like:

On branch saradeveloper/my-great-new-feature
Your branch and 'origin/saradeveloper/my-great-new-feature' have diverged,
and have 56 and 16 different commits each, respectively.
 (use "git pull" to merge the remote branch into yours)

Do not run git pull!!!!!
This is one of the few times that you should not do what git suggests.
Doing so will try to merge your original history into your new one.
Instead, you should verify that the new commit history is correct and then do a force push by running git push --force.

Tip

If anytime during the rebasing process, you make a mistake or decide you want to abort the rebasing process, simple run git rebase --abort.
This will return the repository to the state immediately before the rebasing process.

Making Pull Requests

Once you have completed implementing, testing, and documenting a new feature on a branch in your fork and wish to contribute it back to the geodynamics/pylith repository, you open a pull request.
See GitHub Docs: About pull requests [https://help.github.com/articles/about-pull-requests/] for more information.

Tip

To become familiar with making pull requests, we recommend starting with a small, simple change.
This may be as little as fixing a typo in the documentation or a comment.
Create a feature branch for the change, push it to your repository, and then make a pull request.

Adding Remotes For Accessing Other PyLith Forks

When collaborating with other people working on PyLith, it is helpful to be able to checkout branches from their forks.
You can add their fork as an additional “remote” repository.

Listing 226 Adding an additional remote repository to track branches in other forked repositories.

Add remote
git remote add FORK-NAME https://github.com/GITHUB_USERNAME/pylith.git
Example:
git remote add saradeveloper https://github.com/saradeveloper/pylith.git

Show remotes
git remote -v

Fetch the information for the remote
git fetch FORK-NAME
Example:
git fetch saradeveloper

Checkout remote branch
git checkout -b saradeveloper/feature-powerlaw-rheology

Push to remote branch (requires write access)
git push FORK-NAME BRANCH
Example:
git push saradeveloper feature-powerlaw-rheology

Rebuilding PETSc and PyLith

For instructions on how to build PyLith from source, please see the PyLith Installer Documentation [https://pylith-installer.readthedocs.io/en/latest/devenv/index.html].

Rebuilding PETSc

Updating and rebuilding PETSc is quite simple once it has been configured and built once before.

Warning

Updating the PETSc knepley/pylith branch that PyLith uses almost always involves rebasing and forced pushes.
As a result, you cannot simply use git pull to update the knepley/pylith branch.
Instead, you need to delete the old knepley/pylith branch and then check it out again to get the current version.

Change to PETSc source Directory
cd $PETSC_DIR

Switch to the main branch and fetch the updates, pruning deleted branches.
git checkout main
git fetch -p

Remove your old knepley/pylith branch and then get the current knepley/pylith branch.
git branch -D knepley/pylith
git checkout knepley/pylith

Reconfigure
arch-pylith-debug/lib/petsc/conf/reconfigure-arch-pylith-debug.py

Rebuild
make

Important

After rebuilding PETSc, you should rebuild PyLith.
If there are incompatibilities between the two, then you will normally get compilation errors building PyLith.
If there are incompatibilities and you do not rebuild PyLith, then you will usually get a segmentation fault when running PyLith.

Rebuilding PyLith

Overview

Pylith uses the GNU Build System (often called autotools, which consists of autoconf, automake, and libtool) to configure and build.
The configure options and checks are defined in configure.ac with additional macros in the m4 directory.
Note that the m4 directory is a Git submodule corresponding to the geodynamics/autoconf_cig Git repository.

Updating your fork

It is a good idea to keep your main branch and any other branches you use from the geodynamics/pylith repository up to date.
See Updating Your Local Branch To Match The Upstream Repository for how to merge updates from the upstream (geodynamics/pylith) repository.

Makefiles

The PyLith configure script uses automake to convert each Makefile.am file into a Makefile.
The organization and content of the Makefile.am file depends on whether it is related to the C++ library, SWIG interface files, Python modules, C++ unit tests, Python unit tests, MMS tests, full-scale tests, or examples.

For the C++ library files within the libsrc directory, the libsrc/Makefile.am contains the implementation files while the header files are listed in the Makefile.am file within the underlying directories.
For the SWIG interface files within the modulesrc directory, Makefile.am file contains information on how to build the SWIG Python module.
The Python modules use a single Makefile.am file in the pylith directory.
Each test suite (C++ unit tests for each subpackage, Python unit tests, and each suite of full-scale tests) use a single Makefile.am.
These files define how the tests are built, additional input files that should be included in the source distribution, and temporary files that should be deleted.

Each suite of examples contains a Makefile.am that defines the files that are to be included in the source distribution.
It also defines which files are created and should be deleted upon make clean.

Build Targets

Several build targets are defined to make it easy to rebuild/reinstall PyLith and rerun tests whenever the source code changes.
Each target can be run using make TARGET where TARGET is one of the following:

	all
	Build all source code.

	install
	Build and install.

	check
	Run the entire test suite.

Tip

On a machine with multiple cores, faster builds of the C++ code (library and C++ unit tests) are available using the -jNTHREADS command line argument, where NTHREADS is the number of threads to use.
We usually set the number of threads equal to twice the number of physical cores.

After modifying code, the C++ library, SWIG modules, and Python code need to be rebuilt and reinstalled before running a PyLith simulation.

Listing 227 Rebuilding Pylith C++ library, SWIG modules, and Python modules

Change to top-level PyLith build directory.
cd $PYLITH_BUILDDIR

Reinstall everything using 8 threads to build library.
make install -j8

Rebuild and reinstall only the library using 8 threads.
make install -j8 -C libsrc

Rebuild and reinstall only the SWIG modules
make install -C modulesrc

Reinstall only the Python modules
make install -C pylith

After modifying the C++ code, only the C++ library needs to be rebuilt before running C++ unit tests or MMS tests.

Listing 228 Rebuilding Pylith C++ library and rerunning the C++ unit tests

Change to top-level PyLith build directory.
cd $PYLITH_BUILDDIR/build/pylith-debug

Rebuild the library using 8 threads.
make -j8 -C libsrc

Rerun the C++ unit tests.
make check -C tests/libtests

Similarly, after changing the Python code, only the Python modules need to be reinstalled before running a Python unit test.
However, if changes are also made to the C++ code, then the C++ library and modules must be rebuilt and reinstalled before running a Python unit test.

Listing 229 Rebuilding Pylith Python modules and rerunning Python unit tests

Change to top-level PyLith build directory.
cd $PYLITH_BUILDDIR/build/pylith-debug

Reinstall PyLith Python modules.
make install -C pylith

Rerun Python unit tests.
make check -C tests/pytests

Code Layout

The PyLith software suite is composed of a C++ library, Python modules, a Python application, and a few Python preprocessing and post-processing utilities.

Directory Structure

The C++, Python, and SWIG Python/C++ interface files all sit in different directories.
Similarly, the unit tests, MMS tests, full-scale tests, examples and documentation are also in their own directories.

pylith/
├── ci-config # continuous integration testing configuration
├── docker # Dockerfiles for creating Docker images
├── developer # Utilities for developers
├── docs # Documentation source code
├── libsrc # C++ source for library
├── modulesrc # SWIG interfaces files for C++ Python bindings.
├── pylith # Python source code for PyLith modules.
├── applications # Source code for command line programs
├── m4 # Autoconf macros
├── share # Common parameter settings
├── examples # Example suite
└── tests
 ├── libtests # C++ unit tests
 ├── pytests # Python unit tests
 ├── mmstests # C++ Method of Manufactured solution tests
 ├── fullscale # Automated full-scale tests
 └── manual # Manual full-scale tests

We use the Pyre framework (written in Python) to collect all user parameters and to launch the MPI application.
As a result, the top-level code is written in Python.
In most cases there is a low-level C++ object of the same name with the low-level implementation of the object.
We limit the Python code to collection of the user parameters, some simple checking of the parameters, and passing the parameters to the corresponding C++ objects.

The C++ library, SWIG interface files, and Python modules are organized into several subpackages with common names.

	bc Boundary conditions.

	faults Faults.

	feassemble General finite-element formulation.

	fekernels Finite-element pointwise functions (kernels).

	friction Fault constitutive models.

	materials Material behavior, including bulk constitutive models.

	meshio Input and output.

	problems General problem formulation.

	testing Common testing infrastructure.

	topology Finite-element mesh topology.

	utils General utilities.

Code Structure

Legend for class diagrams

	Abstract classes are shown in the yellow boxes.

	Concrete classes are shown in the green boxes.

	Inheritance is denoted by an arrow.

	Aggregation is denoted by the a diamond and arrow.

Application

[image: PyLithApp and its data member objects.]

Fig. 136 Diagram showing the relationships among objects associated with PyLithApp.

Problem

[image: Python and C++ Problem objects and their data members.]

Fig. 137 Diagram showing the relationships among the Python and C++ Problem objects and their data members.

Physics and Finite-Element Objects

We separate the specification of the physics from the finite-element operations.
That is, we have one set of objects that specify the physics through materials, boundary conditions, and faults; another set of objects perform the finite-element operations required to solve the equations.
Fig. 138 illustrates this separation.
The user specifies the parameters for the Physics objects, which each create the appropriate integrator and/or constraint via factory methods.

[image: Hierarchy of physics and corresponding finite-element objects.]

Fig. 138 Diagram showing the relationships among objects specifying the physics and the finite-element implementations.

We generalize the finite-element operations into two main classes: Integrator and Constraint.
The Integrator is further separated into concrete classes for performing the finite-element integrations over pieces of the domain (IntegratorDomain), pieces of the domain boundary (IntegratorBoundary), and interior interfaces (IntegratorInterface).
We implement several kinds of constraints, corresponding to how the values of the constrained degrees of freedom are specified.
ConstraintSpatialDB gets values for the constrained degrees of freedom from a spatial database; ConstraintUserFn gets the values for the constrained degrees of freedom from a function (this object is widely used in tests); ConstraintSimple is a special case of ConstraintUserFn with the constrained degrees of freedom set programmatically using a label (this object is used for constraining the edges of the fault).

Problem holds the Physics objects as materials, boundary conditions, and interfaces.
During initialization of Problem, each Physics object creates any necessary Integrator and Constraint objects to implement the physics.
For example, a material will create an IntegratorDomain object that performs integration over that material’s cells.

Materials

[image: Hierarchy of materials related objects.]

Fig. 139 Diagram showing the relationships among objects associated with materials.

Boundary Conditions

[image: Hierarchy of boundary condition related objects.]

Fig. 140 Diagram showing the relationships among objects associated with boundary conditions.

Interior Interfaces (Faults)

TODO

Add class diagram and discussion for FaultCohesiveKin, KinSrc.

Mesh Importing

[image: Hierarchy of mesh generation and importing related objects.]
Fig. 141 Diagram showing the relationships among objects associated with mesh generation and importing.

Output

[image: Hierarchy of output related objects.]

Fig. 142 Diagram showing the relationships among objects associated with output.

PyLith Application Flow

The PyLith application driver performs two main functions.
First, it collects all user parameters from input files (e.g., .cfg files) and the command line, and then it performs from simple checks on the parameters.
Second, it launches the MPI job.

Once the MPI job launches, the application flow is:

	Read the finite-element mesh; pylith.meshio.MeshImporter.

	Read the mesh (serial); pylith::meshio::MeshIO.

	Reorder the mesh, if desired; pylith::topology::ReverseCuthillMcKee.

	Insert cohesive cells as necessary (serial); pylith::faults::FaultCohesive.

	Distribute the mesh across processes (parallel); pylith::topology::Distributor.

	Refine the mesh, if desired (parallel); pylith::topology::RefineUniform.

	Setup the problem.

	Preinitialize the problem by passing information from Python to C++ and doing minimal setup pylith.Problem.preinitialize().

	Perform consistency checks and additional checks of user parameters; pylith.Problem verifyConfiguration().

	Complete initialization of the problem; pylith::problems::Problem::initialize().

	Run the problem; pylith.problems.Problem.run().

	Cleanup; pylith.problems.Problem.finalize().

	Close output files.

	Deallocate memory.

	Output PETSc log summary, if desired.

In the first step, we list the object performing the work, whereas in subsequent steps we list the top-level object method responsible for the work.
Python objects are listed using the path.class syntax while C++ objects are listed using namespace::class syntax.
Note that a child class may redefine or perform additional work compared to what is listed in the parent class method.

Reading the mesh and the first two steps of the problem setup are controlled from Python.
That is, at each step Python calls the corresponding C++ methods using SWIG.
Starting with the complete initialization of the problem, the flow is controlled at the C++ level.

Time-Dependent Problem

In a time-dependent problem the PETSc TS object (relabeled PetscTS within PyLith) controls the time stepping.
Within each time step, the PetscTS object calls the PETSc linear and nonlinear solvers as needed, which call the following methods of the C++ pylith::problems::TimeDependent object as needed: computeRHSResidual(), computeLHSResidual(), and computeLHSJacobian().
The pylith::problems::TimeDependent object calls the corresponding methods in the boundary conditions, constraints, and materials objects.
At the end of each time step, it calls problems::TimeDependent::poststep().

Boundary between Python and C++

The Python code is limited to collecting user input and launching the MPI job.
Everything else is done in C++.
This facilitates debugging (it is easier to track symbols in the C/C++ debugger) and unit testing, and reduces the amount of information that needs to be passed from Python to C++.
The PyLith application and a few other utility functions, like writing the parameter file, are limited to Python.
All other objects have a C++ implementation.
Objects that have user input collect the user input in Python using Pyre and pass it to a corresponding C++ object.
Objects that do not have user input, such as the integrators and constraints, are limited to C++.

The source code that follows shows the essential ingredients for Python and C++ objects, using the concrete example of the Material objects.

Warning

The examples below show skeleton Python and C++ objects to illustrate the essential ingredients.
We have omitted documentation and comments that we would normally include, and simplified the object hierarchy.
See Coding Style for details about the coding style we use in PyLith.

Important

Consistent inheritance between C++ and Python is important in order for SWIG to generate a Python interface that is consistent with the C++ interface.

Listing 230 Skeleton Python object in PyLith

from pylith.problems.Physics import Physics
from .materials import Material as ModuleMaterial

Python objects should inherit the corresponding SWIG interface object (ModuleMaterial).
Python object inheritance should match C++ object inheritance.
class Material(PetscComponent, ModuleMaterial):

 # Pyre inventory: properties and facilities
 import pythia.pyre.inventory

 materialId = pyre.inventory.int("id", default=0)
 materialId.meta['tip'] = "Material identifier (from mesh generator)."

 label = pyre.inventory.str("label", default="", validator=validateLabel)
 label.meta['tip'] = "Descriptive label for material."

 # Public methods

 def __init__(self, name="material"):
 Physics.__init__(self, name)

 def preinitialize(self, problem):
 Physics.preinitialize(self, problem)

 ModuleMaterial.setMaterialId(self, self.materialId)
 ModuleMaterial.setDescriptiveLabel(self, self.label)

Listing 231 Skeleton C++ header file in PyLith

#if !defined(pylith_materials_material_hh) // Include guard
#define pylith_materials_material_hh

#include "materialsfwd.hh" // forward declaration of Material object

#include "pylith/problems/Physics.hh" // ISA Physics

class pylith::materials::Material : public pylith::problems::Physics {
 friend class TestMaterial // unit testing

public: // public methods

 // Constructor and desctructor

 Material(void);
 virtual ~Material(void);

 // Method to deallocate PETSc data structures before calling PetscFinalize().
 virtual void deallocate(void);

 // Accessors
 void setMaterialId(const int value);
 int getMaterialId(void) const;
 void setDescriptiveLabel(const char* value);
 const char* getDescriptiveLabel(void) const;
 void setGravityField(spatialdata::spatialdb::GravityField* const g);

 // Initialization
 virtual pylith::feassemble::Constraint* createConstraint(const pylith::topology::Field& solution);

protected: // protected members

 spatialdata::spatialdb::GravityField* _gravityField; ///< Gravity field for gravitational body forces.

private: // private members

 int _materialId; ///< Value of material-id label in mesh.
 std::string _descriptiveLabel; ///< Descriptive label for material.

private: // not implemented

 Material(const Material&); ///< Not implemented.
 const Material& operator=(const Material&); ///< Not implemented

};

#endif // pylith_materials_material_hh

Listing 232 Skeleton C++ definition file in PyLith

// Information about local configuration generated while running configure script.
#include <portinfo>

#include "Material.hh" // implementation of object methods

#include "pylith/utils/journals.hh" // USES PYLITH_COMPONENT_*

#include <cassert> // USES assert()
#include <stdexcept> // USES std::runtime_error

pylith::materials::Material::Material(void) :
 _gravityField(NULL),
 _materialId(0),
 _descriptiveLabel("") {}

pylith::materials::Material::~Material(void) {
 deallocate();
} // destructor

void
pylith::materials::Material::deallocate(void) {
 PYLITH_METHOD_BEGIN;

 pylith::problems::Physics::deallocate();
 _gravityField = NULL; // :TODO: Use shared pointer.

 PYLITH_METHOD_END;
} // deallocate

void
pylith::materials::Material::setMaterialId(const int value) {
 PYLITH_COMPONENT_DEBUG("setMmaterialId(value="<<value<<")");

 _materialId = value;
} // setMaterialId

int
pylith::materials::Material::getMaterialId(void) const {
 return _materialId;
} // getMaterialId

void
pylith::materials::Material::setDescriptiveLabel(const char* value) {
 PYLITH_COMPONENT_DEBUG("setDescriptiveLabel(value="<<value<<")");

 _descriptiveLabel = value;
} // setDescriptiveLabel

const char*
pylith::materials::Material::getDescriptiveLabel(void) const {
 return _descriptiveLabel.c_str();
} // getDescriptiveLabel

void
pylith::materials::Material::setGravityField(spatialdata::spatialdb::GravityField* const g) {
 _gravityField = g;
} // setGravityField

pylith::feassemble::Constraint*
pylith::materials::Material::createConstraint(const pylith::topology::Field& solution) {
 return NULL;
} // createConstraint

SWIG Interface Files

SWIG interface files are essentially stripped down versions of C++ header files.
Because SWIG only implements the public interface, we omit all data members and all protected and private data methods that are not abstract methods or implement abstract methods.

Listing 233 SWIG interface file

// The class declaration must appear within the appropriate namespace blocks.

namespace pylith {
 namespace materials {

 class Material : public pylith::problems::Physics {
 public: // public methods

 // Constructor and desctructor

 Material(void);
 virtual ~Material(void);

 // Method to deallocate PETSc data structures before calling PetscFinalize().
 virtual void deallocate(void);

 // Accessors
 void setMaterialId(const int value);
 int getMaterialId(void) const;
 void setDescriptiveLabel(const char* value);
 const char* getDescriptiveLabel(void) const;
 void setGravityField(spatialdata::spatialdb::GravityField* const g);

 // Initialization
 virtual pylith::feassemble::Constraint* createConstraint(const pylith::topology::Field& solution);
 };
 }
}

PETSc Finite-Element Implementation

Formulating the weak form of the governing equation in terms of pointwise functions allows the PyLith implementation of the equations to be done at a rather high level.
Most of the finite-element details are encapsulated in PETSc routines that compute the integrals and solve the system of equations.
In fact, adding materials and boundary conditions requires calling only a few PETSc finite-element functions to register the point-wise functions.
A new material may need to add to the library of solution subfields and auxiliary subfields, but adding these fields is also done at a high-level.

The remainder of this section discusses three aspects of the finite-element implementation handled by PyLith to give you a peek of what is going on under the hood.

DMPlex

The finite-element mesh is stored as a DMPlex object.
This is a particular implementation of the PETSc Data Management (DM, called PetscDM within PyLith) object.
Within a DMPlex object, vertices, edges, faces, and cells are all called points.
The points are numbered sequentially, beginning with cells, followed by vertices, edges, and then faces.
Treating all topological pieces of the mesh the same way, as points in an abstract graph, allows us to write algorithms which apply to very different meshes without change.
For example, we can write a finite element assembly loop that applies to meshes of any dimension, with any cell shape, with (almost) any finite element.

Point Depth and Height

In general, vertices are at a depth of 0 and cells are at the maximum depth.
Similarly, cells are at a height of 0 and vertices are at the maximum height.
Notice that depth and height correspond to the usual dimension and codimension.
Table 36 shows the heights and depths of the vertices edges, faces, and cells in a 3D mesh.

Table 36 Depth and height of various topological pieces in DMPlex.

	Point type

	Depth

	Height

	Vertices

	0

	3

	Edges

	1

	2

	Faces

	2

	1

	Cells

	3

	0

For a boundary mesh, we currently store the full set of points (vertices, edges, faces, and cells).
Obviously for 2-D meshes, the boundary mesh doesn’t contain “volume” cells, but just vertices, edges, and faces.
This means the “boundary” cells are at a height of 1 and a depth equal to the maximum depth of 1.

[image: Mesh topology]

Fig. 143 Conventional numbering (left) with vertices and cells numbered independently and DMPlex numbering (right) with cells, vertices, edges, (and faces), numbered sequentially.

PetscSection and PetscVec

We store a field over the mesh in a vector (PETSc Vec object, called PetscVec in PyLith).
The PetscSection object describes the layout of the vector over the DMPlex object.
The vector may hold multiple subfields, each with its own discretization.
The chart of the PetscSection defines the range of points (minimum and maximum) over which the section is defined.
For each point in the chart, the section holds the number of degrees of freedom a point has and the offset in the PetscVec for its first degree of freedom.
The section also holds the number of degrees of freedom and offset for each individual subfield within the section for each point in the chart.

Because the PetscSection knows only about points, and not about topology or geometry, it allows us to express the mathematical concepts without getting lost in the details.
For example, a \(P_1\) 3D vector field assigns 3 degrees of freedom to each vertex.
This same section could be used to layout a field over a circle, surface of a cylinder, Mobius strip, sphere, cube, ball, or PyLith mesh.
The section separates the layout of data over a mesh from the actual storage of values, which is done by the PetscVec.
The section tells you how to look up the values, which are associated with a piece of the mesh, inside the vector.
For example, you can ask for the offset into the vector for the values associated with an edge in the mesh, and how many degrees of freedom there are on the edge.

The PetscSection also includes the information about the constrained degrees of freedom.
We refer to a PetscVec that includes the values for the constrained degrees of freedom as a local vector and a PetscVec with the values for the constrained degrees of freedom removed as a global vector.
Constraints often arise from Dirichlet boundary conditions, which change the basis functions of the approximating space, but can also arise from algebraic relations between unknowns.
A local vector is used for assembly of the residual vector and Jacobian matrix, because we need the boundary values in order to compute those integrals.
Global vectors are used for the algebraic solver because we do not want solution values fixed by constraints to participate in the solve.

Listing 234 PetscSection information for a solution field with three subfields.

This example solution field has three subfields:
* displacement (vector field, 2 components, basis order 1)
* velocity (vector field, 2 components, basis order 1)
* pressure (scalar field, 1 component, basis order 0)
#
The displacement and velocity subfields have degrees of freedom on the vertices.
The pressure subfield has degrees of freedom on the cells.
#
The order of the values (offsets in the PetscVec) follows the
ordering of the points (cells, vertices, edges, and faces).
In this example, the pressure subfield appears first (offsets 0-3),
followed by the two components of the displacement subfield and
velocity subfield for each point.
PetscSection Object: 1 MPI processes
 type not yet set
3 fields
 field 0 with 2 components # displacement field
Process 0:
(POINT) dim SUBFIELD_NUM_COMPONENTS offset OFFSET
(0) dim 0 offset 0 # Cells
(1) dim 0 offset 0
(2) dim 0 offset 0
(3) dim 0 offset 0
(4) dim 2 offset 4 # Vertices
(5) dim 2 offset 8
(6) dim 2 offset 12
(7) dim 2 offset 16
(8) dim 2 offset 20
(9) dim 0 offset 24 # Edges
(10) dim 0 offset 24
(11) dim 0 offset 24
(12) dim 0 offset 24
(13) dim 0 offset 24
(14) dim 0 offset 24
(15) dim 0 offset 24
(16) dim 0 offset 24
field 1 with 2 components # velocity field
Process 0:
(0) dim 0 offset 0 # Cells
(1) dim 0 offset 0
(2) dim 0 offset 0
(3) dim 0 offset 0
(4) dim 2 offset 6 # Vertices
(5) dim 2 offset 10
(6) dim 2 offset 14
(7) dim 2 offset 18
(8) dim 2 offset 22
(9) dim 0 offset 24 # Edges
(10) dim 0 offset 24
(11) dim 0 offset 24
(12) dim 0 offset 24
(13) dim 0 offset 24
(14) dim 0 offset 24
(15) dim 0 offset 24
(16) dim 0 offset 24
field 2 with 1 components # pressure field
Process 0:
(0) dim 1 offset 0 # Cells
(1) dim 1 offset 1
(2) dim 1 offset 2
(3) dim 1 offset 3
(4) dim 0 offset 4 # Vertices
(5) dim 0 offset 4
(6) dim 0 offset 4
(7) dim 0 offset 4
(8) dim 0 offset 4
(9) dim 0 offset 4 # Edges
(10) dim 0 offset 4
(11) dim 0 offset 4
(12) dim 0 offset 4
(13) dim 0 offset 4
(14) dim 0 offset 4
(15) dim 0 offset 4
(16) dim 0 offset 4

Integration

Integration involves integrals over the domain (materials), over the boundary of the domain (boundary conditions), or over interior interfaces (fault surface).
These three operations are done by different PETSc functions and integrator objects.

	DMPlexComputeResidual_Internal
	Compute the contribution to the LHS or RHS residual for a single material.
This function and the functions it calls handle looping over the cells in the material, integrating the weak form for each of the fields, and adding them to the residual.
A more appropriate name would be DMPlexComputeResidualSingle, and that may be used in the future.
This function is called from IntegratorDomain.

	DMPlexComputeBdResidualSingle
	Compute the contribution to the LHS or RHS residual for a single boundary condition.
This function and the functions it calls handle looping over faces (3D) or edges (2D) on the boundary, integrating the weak form for each of the fields, and adding them to the residual.
This function is called from IntegratorBoundary.

	DMPlexComputeResidual_Hybrid_Internal
	Compute the contribution to the LHS or RHS residual for a single fault surface.
This function and the functions it calls handle looping over the cohesive cells , integrating the weak form for each of the fields, and adding them to the residual.
This function is called from IntegratorInterface.

Projection

Input and output often involve projecting fields to/from the finite-element space.
PETSc provides a family of functions for this.
We generally use two of these, one for analytical functions and one for discretized fields.
Projection may be a misleading term here, since we are not referring to the common \(L_2\) projection, but rather interpolation of the function by functions in our finite-element space.

Let’s start with the simple example of Fourier analysis, which most people have experience with.
If we want the Fourier interpolant \(\tilde f\) for a given function \(f\), then we need to determine its Fourier coefficients, \(f_k\), where

(198)\[\begin{equation}
 \tilde f = \sum_k f_k e^{i k x}.
\end{equation}\]

This is straightforward because the basis functions in the Fourier representation are orthogonal,

(199)\[\begin{equation}
 \int^{2\pi}_0 e^{-i m x} e^{i k x} \, dx = 2\pi \delta_{km}.
\end{equation}\]

To find the coefficient \(f_m\), we just multiply by the conjugate of the basis function and integrate,

(200)\[\begin{align}
 \int^{2\pi}_0 e^{-i m x} \tilde f \, dx &= \int^{2\pi}_0 e^{-i m x} \sum_k f_k e^{i k x} \, dx, \\
 &= \sum_k f_k \int^{2\pi}_0 e^{-i m x} e^{i k x} \, dx, \\
 &= \sum_k f_k 2\pi \delta_{km}, \\
 &= 2\pi f_m,
\end{align}\]

and we have our coefficient \(f_m\),

(201)\[\begin{equation}
 f_m = \frac{1}{2 \pi}\int^{2\pi}_0 e^{-i m x} \tilde f \, dx.
\end{equation}\]

The finite element basis \(\phi_i\) is not orthogonal, so we have an extra step.
We could take the inner product of \(f\) with all the basis functions, and then sort out the dependencies by solving a linear system (the mass matrix), which is what happens in \(L_2\)
projection.
However, suppose we have another basis \(\psi_i\) of linear functionals which is biorthogonal to \(\phi_i\), meaning

(202)\[\begin{equation}
 \psi_i(\phi_j) = \delta_{ij}.
\end{equation}\]

We can easily pick out the coefficient of \(\tilde f\) by acting with the corresponding basis functional.
Our interpolant is

(203)\[\begin{equation}
 \tilde f = \sum_k f_k \phi_k(x).
\end{equation}\]

Acting on the interpolant with the biorthogonal basis results in

(204)\[\begin{equation}
 \psi_i(\tilde f) = \psi_i\left(\sum_k f_k \phi_k(x) \right).
\end{equation}\]

Making use of the fact that the finite-element basis \(\phi_i\) is linear, yields

(205)\[\begin{align}
 \psi_i(\tilde f) &= \sum_k f_k \psi_i\left(\phi_k(x) \right),\\
 \psi_i(\tilde f) &= \sum_k f_k \delta_{ik}, \\
 \psi_i(\tilde f) &= f_i.
\end{align}\]

We call \(\phi_i\) the primal basis, and \(\psi_i\) the dual basis.
We note that if \(f\) does not lie in our approximation space spanned by \(\phi_i\), then interpolation is not equivalent to \(L_2\) projection.
This will not usually be important for our purposes.

	DMProjectFunctionLocal
	Project an analytical function into the given finite-element space.

	DMProjectFieldLocal
	Project a discretized field in one finite-element space into another finite-element space.

Pointwise functions (kernels)

The following code blocks show the function prototypes for pointwise functions for the residual and the Jacobian.
We use the same prototype for the boundary and fault interfaces residuals.

Listing 235 Function prototype for pointwise functions for integrating the residual over the domain (materials).

/** PetscPointFunc prototype.
 *
 * @param[in] dim Spatial dimension.
 * @param[in] numS Number of registered subfields in solution field.
 * @param[in] numA Number of registered subfields in auxiliary field.
 * @param[in] sOff Offset of registered subfields in solution field [numS].
 * @param[in] sOff_x Offset of registered subfields in gradient of the solution field [numS].
 * @param[in] s Solution field with all subfields.
 * @param[in] s_t Time derivative of solution field.
 * @param[in] s_x Gradient of solution field.
 * @param[in] aOff Offset of registered subfields in auxiliary field [numA]
 * @param[in] aOff_x Offset of registered subfields in gradient of auxiliary field [numA]
 * @param[in] a Auxiliary field with all subfields.
 * @param[in] a_t Time derivative of auxiliary field.
 * @param[in] a_x Gradient of auxiliary field.
 * @param[in] t Time for residual evaluation.
 * @param[in] x Coordinates of point evaluation.
 * @param[in] numConstants Number of registered constants.
 * @param[in] constants Array of registered constants.
 * @param[out] f [dim].
 */
 void
 func(const PylithInt dim,
 const PylithInt numS,
 const PylithInt numA,
 const PylithInt sOff[],
 const PylithInt sOff_x[],
 const PylithScalar s[],
 const PylithScalar s_t[],
 const PylithScalar s_x[],
 const PylithInt aOff[],
 const PylithInt aOff_x[],
 const PylithScalar a[],
 const PylithScalar a_t[],
 const PylithScalar a_x[],
 const PylithReal t,
 const PylithScalar x[],
 const PylithInt numConstants,
 const PylithScalar constants[],
 PylithScalar f[]);

Listing 236 Function prototype for pointwise functions for integrating the Jacobian over the domain (materials).

/** PetscPointJac prototype.
 *
 * This is identical to the PetscPointFunc with the addition of the
 * s_tshift argument.
 *
 * @param[in] s_tshift The multiplier for dF/dS_t.
 */
 void
 func(const PylithInt dim,
 const PylithInt numS,
 const PylithInt numA,
 const PylithInt sOff[],
 const PylithInt sOff_x[],
 const PylithScalar s[],
 const PylithScalar s_t[],
 const PylithScalar s_x[],
 const PylithInt aOff[],
 const PylithInt aOff_x[],
 const PylithScalar a[],
 const PylithScalar a_t[],
 const PylithScalar a_x[],
 const PylithReal t,
 const PylithReal s_tshift,
 const PylithScalar x[],
 const PylithInt numConstants,
 const PylithScalar constants[],
 PylithScalar J[]);

Listing 237 Function prototype for pointwise functions for integrating the residual over domain boundaries and interior interfaces.

/** PetscBdPointFunc prototype.
 *
 * @param[in] dim Spatial dimension.
 * @param[in] numS Number of registered subfields in solution field.
 * @param[in] numA Number of registered subfields in auxiliary field.
 * @param[in] sOff Offset of registered subfields in solution field [numS].
 * @param[in] sOff_x Offset of registered subfields in gradient of the solution field [numS].
 * @param[in] s Solution field with all subfields.
 * @param[in] s_t Time derivative of solution field.
 * @param[in] s_x Gradient of solution field.
 * @param[in] aOff Offset of registered subfields in auxiliary field [numA]
 * @param[in] aOff_x Offset of registered subfields in gradient of auxiliary field [numA]
 * @param[in] a Auxiliary field with all subfields.
 * @param[in] a_t Time derivative of auxiliary field.
 * @param[in] a_x Gradient of auxiliary field.
 * @param[in] t Time for residual evaluation.
 * @param[in] x Coordinates of point evaluation.
 * @param[in] numConstants Number of registered constants.
 * @param[in] constants Array of registered constants.
 * @param[out] f0 [dim].
 */
void
func(const PylithInt dim,
 const PylithInt numS,
 const PylithInt numA,
 const PylithInt sOff[],
 const PylithInt sOff_x[],
 const PylithScalar s[],
 const PylithScalar s_t[],
 const PylithScalar s_x[],
 const PylithInt aOff[],
 const PylithInt aOff_x[],
 const PylithScalar a[],
 const PylithScalar a_t[],
 const PylithScalar a_x[],
 const PylithReal t,
 const PylithScalar x[],
 const PylithReal n[],
 const PylithInt numConstants,
 const PylithScalar constants[],
 PylithScalar f0[]);

Listing 238 Function prototype for pointwise functions for integrating the residual over domain boundaries.

/** PetscBdPointJac prototype.
 *
 * This is identical to the PetscBdPointFunc with the addition of the
 * s_tshift argument.
 *
 * @param[in] s_tshift The multiplier for dF/dS_t.
 */
void
func(const PylithInt dim,
 const PylithInt numS,
 const PylithInt numA,
 const PylithInt sOff[],
 const PylithInt sOff_x[],
 const PylithScalar s[],
 const PylithScalar s_t[],
 const PylithScalar s_x[],
 const PylithInt aOff[],
 const PylithInt aOff_x[],
 const PylithScalar a[],
 const PylithScalar a_t[],
 const PylithScalar a_x[],
 const PylithReal t,
 const PylithReal s_tshift,
 const PylithScalar x[],
 const PylithReal n[],
 const PylithInt numConstants,
 const PylithScalar constants[],
 PylithScalar J[]);

The integrators handle calling the appropriate functions for setting the kernels for the integration.
The Physics objects (materials, boundary conditions, and faults) tell the integrators what kernels to use.
Pointwise functions not used should be set to NULL.

Listing 239 Data structure used to specify kernels for integration of the residual over the domain (materials).

struct ResidualKernels {
 std::string subfield; ///< Name of subfield
 PetscPointFunc r0; ///< f0 (RHS) or g0 (LHS) function.
 PetscPointFunc r1; ///< f1 (RHS) or g1 (LHS) function.
};

Listing 240 Data structure used to specify kernels for integration of the Jacobian over the domain (materials).

struct JacobianKernels {
 std::string subfieldTrial; ///< Name of subfield associated with trial function (row in Jacobian).
 std::string subfieldBasis; ///< Name of subfield associated with basis function (column in Jacobian).
 PetscPointJac j0; ///< J0 function.
 PetscPointJac j1; ///< J1 function.
 PetscPointJac j2; ///< J2 function.
 PetscPointJac j3; ///< J3 function.
};

Listing 241 Data structure used to specify kernels for integration of the residual over the domain (materials).

struct ResidualKernels {
 std::string subfield; ///< Name of subfield
 PetscBdPointFunc r0; ///< f0 (RHS) or g0 (LHS) function.
 PetscBdPointFunc r1; ///< f1 (RHS) or g1 (LHS) function.
};

Listing 242 Data structure used to specify kernels for integration of the Jacobian over the domain (materials).

struct JacobianKernels {
 std::string subfieldTrial; ///< Name of subfield associated with trial function (row in Jacobian).
 std::string subfieldBasis; ///< Name of subfield associated with basis function (column in Jacobian).
 PetscBdPointJac j0; ///< J0 function.
 PetscBdPointJac j1; ///< J1 function.
 PetscBdPointJac j2; ///< J2 function.
 PetscBdPointJac j3; ///< J3 function.
};

Adding New Governing Equations and/or Bulk Rheologies

Overview

There are four basic tasks for adding new physics in the form of a governing equation:

	Select the fields for the solution. This will control the form of the partial differential equation and the terms in the residuals and Jacobians.

	Derive the pointwise functions for the residuals and Jacobians. Determine flags that will be used to indicate which terms to include.

	Determine which parameters in the pointwise functions could vary in space as well as any state variables. We bundle all state variables and spatially varying parameters into a field called the auxiliary field. Each material has a separate auxiliary field.

	Parameters that are spatially uniform are treated separately from the parameters in the auxiliary field.

Material is responsible for the terms in the governing equations associated with the domain (i.e., volume integrals in a 3D domain and surface integrals in a 2D domain).
A separate object implements the bulk rheology for a specific governing equation.
Fig. 144 shows the objects used to implement multiple rheologies for the elasticity equation: an isotropic, linear elastic rheology for incompressible elasticity, and an isotropic, linear elastic rheology for poroelasticity.
The Elasticity object describes the physics for the elasticity equation, including the pointwise functions and flags for turning on optional terms (such as inertia) in the governing equation, and RheologyElasticity defines the interface for bulk elastic rheologies.

[image: Hierarchy for Material related classes.]

Fig. 144 Class diagram for the implementation of governing equations and bulk rheologies.
Each governing equation implementation inherits from the abstract Material class and bulk rheologies inherit from the abstract rheology class specific to that governing equation.

Python

	Define solution subfields.

	All subfields in the solution field are SolutionSubfield objects (see Fig. 145). PyLith already includes several solution subfields:

	SubfieldDisplacement Displacement vector field.

	SubfieldVelocity Velocity vector field.

	SubfieldLagrangeFault Lagrange multiplier field for fault constraints.

	SubfieldPressure Fluid pressure or mean stress scalar field.

	SubfieldTemperature Temperature scalar field.

	PyLith includes solution field containers with predefined subfields:

	SolnDisp Solution composed of a displacement field.

	SolnDispVel Solution composed of displacement and velocity fields.

	SolnDispPres Solution composed of displacement and mean stress (pressure) fields.

	SolnDispLagrange Solution composed of displacement and Lagrange multiplier fields.

	SolnDispPresLagrange Solution composed of displacement, mean stress (pressure), and Lagrange multiplier subfields.

	SolnDispVelLagrange Solution composed of displacement, velocity, and Lagrange multiplier subfields.

	Define auxiliary subfields.

The auxiliary subfields for a governing equation are defined as facilities in a Pyre Component. For example, the ones for Elasticity are in AuxFieldsElasticity. The order of the subfields is defined not by the order they are listed in the Pyre component, but by the order they are added to the auxiliary field in the C++ object. The auxiliary subfields bulk rheologies are defined in the same way.

Important

A single auxiliary field will be created for each material; it contains the auxiliary subfields from both the governing equation and the bulk rheology.

	Flags to turn on/off terms in governing equation.

For the elasticity equation, we sometimes do not include body forces or inertial terms in our simulations. Rather than implement these cases as separate materials, we simply include flags in the material to turn these terms on/off. The flags are implemented as Pyre properties in our material component.

[image: Hierarchy for solution related classes.]

Fig. 145 Class diagram for the solution field, solution subfields, and pre-defined containers of solution subfields.

C++

	Define auxiliary subfields.

We build the auxiliary field using classes derived from pylith::feassemble::AuxiliaryFactory. The method corresponding to each subfield specifies the name of the subfield, its components, and scale for nondimensionalizing. We generally create a single auxiliary factory object for each governing equation, but not each bulk constitutive model, because constitutive models for the same governing equation often have many of the same subfields. For example, most of our bulk constitutive models for the elasticity contain density, bulk modulus, and shear modulus auxiliary subfields.

Important

Within the concrete implementation of the material and bulk rheology objects, we add the subfields to the auxiliary field.
The order in which they are added determines the order they will be in the auxiliary field.
You will need to use know this order when you implement the pointwise functions.
See Fig. 146 for more information on the layout of the auxiliary field.

	Implement the pointwise functions.

The pointwise functions for the residuals, Jacobians, and projections follow nearly identical interfaces.
In most cases you should implement the terms in the governing equation in 3D with 2D plane strain using the more general 3D version.
While this is slightly less efficient, it results in less code to maintain.

	Set the pointwise functions.

We set the pointwise functions for the RHS and LHS residuals and Jacobians, taking into consideration which optional terms of the governing equation have been selected by the user.

[image: Layout of auxiliary subfields.]

Fig. 146 Layout of material auxiliary subfields.
The subfields include those for both the governing equation and the bulk rheology.
The required subfields are at the ends with the optionalfields in the middle. This allows the same pointwise functions to be used for some cases with and without the optional subfields.

Documentation

We write the PyLith documentation in Markedly Structured Text (a Markdown version of reStructured Text) and generate the manual using Sphinx.
The manual is automatically built for the main branch and posted at https://pylith.readthedocs.io.

	Building the documentation

	MyST Quick reference

Contributing to the documentation

In browsing the HTML documentation there is a one to one correspondence between an HTML page and its Markdown page.
You can look at the URL of the HTML page and the corresponding Markdown page will be in the docs directory with the .html suffix replaced by .md.

Building the documentation

You can build a local copy of the documentation using Sphinx.

Prerequisites

You do not have to install PyLith to generate a local copy of the documentation.
Nevertheless, you must have Python 3 and the following Python packages installed:

	sphinx (v3.5 or later)

	myst-parser (0.14.0 or later)

	pydata-sphinx-theme (0.6.2 or later)

	sphinx-copybutton

	sphinxcontrib.bibtex

Generating the documentation

Use the build.sh script in the docs directory to generate the documentation.
The default format is html, which will place the files in the _build/html directory.
PDF and epub formats can also be generated.

cd docs

Generate the documentation as html.
./build.sh

Generate the documentation as a PDF.
./build.sh latex
cd _build/latex && make

Generate the documentation as an epub.
./build.sh epub

MyST Quick reference

Style guide

	Use Markedly Structured Text (MyST), not reStructured Text (rST).

	Place each sentence on its own single line.

Headings

Use # Heading 1 only at the top of each page.

Heading 2

Heading 3

Heading 4

Refer to Heading 2.

Admonitions

General admonition as warning

Text goes here.

Attention

This is an attention admonition.

Danger

This is a danger admonition.

Error

This is an error admonition.

Important

This is an important admonition.

Note

This is a note admonition.

Tip

This is a tip admonition.

Warning

This is a warning admonition.

See also

This is a seealso admonition.

TODO

This is a custom TODO admonition.

Lists

Itemized lists

	Level 1a

	Level 2a

	Level 3a

	Level 3b

	Level 2b

	Level 1b

	Level 1c

Definition lists

	Term 1
	Definition of term 1

	Term 2
	Definition of term 2

Field lists

	field 1:

	Description of field 1

	field 2:

	Description of field 2

Code blocks

Listing 243 C++ code block.

int
main(int argc, char* argv[]) {
 // Emphasized lines corresponding to body of main().
 return 0;
}

Listing 244 Python code block.

def square(x):
 return x**2

Listing 245 Interactive shell.

$ ls
a b c

Listing 246 Bash code block.

Comment
for i in "a b c"; do
 print $i
done

Listing 247 Config code block.

Comment
[pylithapp]
journal.info.problem = 1

[pylithapp.petsc]
ksp_rtol = 1.0e-3

Tables

Please see Table 37.
Table labels cannot contain more than one dash, so we use colons to separate the words in the label.
This is likely a bug.

Table 37 Table caption

	Header 1

	Header 2

	Header 3

	right aligned

	centered

	left aligned

	more data, more data

	yet more data

	even more data

Figures

Please see Fig. 147.
Figure labels cannot contain more than one dash, so we use colons instead.
This is likely a bug.

[image: Screenshot]

Fig. 147 This is the figure caption. Vector graphics should be provided in both PDF (latex output) and SVG (html output) formats.
Raster graphics should be provided in either PNG or JPG formats (whichever is more compact).

Math

For unlabled equations you can use AMSTex environments, such as equation, gather and align.
Unfortunately, Sphinx does not currently support labeled equations using AMSTex environments.
Labeled equations must use the Markdown syntax as in equation (209).

Warning

A group of equations only has a single label, so if you need to label individual equations, place each one in its own math block.

Here is a single equation:

(206)\[\begin{equation}
 F = m a
\end{equation}\]

Here is a group of equations:

(207)\[\begin{gather}
 f_1(x,y) = a_1 x + b_1 y + c_1 \\
 f_2(x,y) = a_2 x + b_2 y + c_2
\end{gather}\]

Here is a group of aligned equations:

(208)\[\begin{align}
 f_1(x,y) &= a_1 x + b_1 y + c_1 \\
 f_2(x,y) &= a_{xx} x^2 + a_{xy} x y + a_{yy} y^2 + a_x x + a_y y + a_0
\end{align}\]

Here is a labeled equation (equation (209)):

(209)\[F = m a\]

Citations

Traditional citation [Aagaard et al., 2007].
Citation as noun Bathe [1995].

Table of contents

Table of contents tree with a maximum depth of 1
:::{toctree}

maxdepth: 1

one.md
two.md
:::

Table of contents tree with no maximum depth specified.
:::{toctree}
one.md
two.md
:::

Git Quick Reference

Break commit into multiple commits

git rebase -i main
Set commit to 'edit', exit, and save.
git reset HEAD~
Make changes.
git rebase --continue

Update from upstream

	Set remote (one time)

Show current remotes
git remote -v

Add remote upstream
git remote add upstream UPSTREAM_REPO

Verify addition of upstream remote
git remote -v

	Update upstream repo

git fetch upstream -p

Rebase branch off main

Make sure main is current
git pull main

Check out branch you want to rebase
git checkout BRANCH

Rebase branch with respect to `main`
git rebase -i main

Branches

	Checkout branch and set tracking: git checkout -b $BRANCH --track $REMOTE/$BRANCH

	Compare current heads: git diff branch1..branch2

	Compare with respect to common ancestor: git diff main...feature

	Compare commits: git log branch1..branch2

	Compare specific file: git diff main..feature -- FILE

	Compare specific file wih working tree: git diff main-- FILE

Delete branches

	Local: git branch -d BRANCH

	Remote: git push origin --delete BRANCH

Rename local branch

git branch -m OLD NEW

Show merged/unmerged branches

git branch --merged $BRANCH
git branch --no-merged $BRANCH

Testing

Testing and debugging PyLith can be challenging due its many dependencies and complex interaction with PETSc.
Our strategy is to test at a variety of levels to isolate bugs close to their origin while also building a comprehensive suite of tests.
We use C++ unit tests for verifying small pieces of code, such as individual C++ class methods, work as intended.
We use the Method of Manufactured Solutions for verifying implementation of governing equations and their solution using PETSc.
We use full-scale tests for verifying integration of complete simulations in both serial and parallel.
When an example, user simulation, or one of the tests indicates a bug exists, we leverage the test suite to find the bugs.
In general, the most efficient strategy for debugging is to first try to expose the bug in a serial unit test, followed by an MMS Test, a serial full-scale test, and finally a parallel full-scale test.
This may require creating new tests if the bug is not exposed by current tests.
The PyLith developers make extensive use of debuggers, such as gdb and lldb, and memory management analysis tools, such as valgrind, to detect and squash bugs.
These are discussed in Debugging tools.

	C++ unit tests
	CppUnit macros

	Method of Manufactured Solutions
	Debugging residual errors

	Debugging Jacobian errors

	Example

	Running C++ unit tests and MMS tests
	Running C++ unit tests

	Running MMS tests
	Using the debugger

	Using valgrind

	Python unit tests

	Full-scale tests
	Command line arguments

	Using the debugger

	Using valgrind

	Example

	Debugging tools
	VS Code integration
	C++ unit test

	MMS test

	PyLith simulation

	Debugger quick reference

	Valgrind quick reference

	Viewing fields
	Viewing differences

	Running tests in CI Docker containers

C++ unit tests

The C++ unit tests target verification at the scale of individual C++ class methods.
This isolates bugs very close to their origin, so they are highly effective at catching simple errors, especially memory errors such as invalid reads, writes, and leaks.
We use the CppUnit [https://www.freedesktop.org/wiki/Software/cppunit/] testing framework for constructing and running tests.

Note

We will be transitioning from CppUnit to Catch2 [https://github.com/catchorg/Catch2] in the near future.
Catch2 provides seamless integration with VS Code and more control over running small batches of tests.

For a given C++ class in libsrc/pylith, we create a separate test class in tests/libtests.
For example, we create pylith::problems::TestPhysics in tests/libtsts/problems/TestPhysics.* to test the pylith::problems::Physics class in libsrc/pylith/problems/Physics.*.
For simple classes that can be fully tested with a single test case, we put the class declaration and implementation in a single .cc file.
For classes that require testing with multiple alternative test cases, we usually define both the test class and a data class in a header file (for example TestSolutionFactory.hh).
The classes are implemented in a corresponding .cc file (for example, TestSolutionFactory.cc) with the test cases defined and implemented in a _Cases.cc file (for example, TestSolutionFactory_Cases.cc).

The test class inherits from CppUnit::TestFixture and defines a list of test methods.
The class methods setUp() and tearDown() are run before and after each test, respectively.
If a class requires significant initialization, we usually put that in protected methods.

CppUnit macros

	Generating the test suite

	CPPUNIT_TEST_SUITE(ClassName); Create a test suite for class ClassName.

	CPPUNIT_TEST(classMethod); Add classMethod as a test in the test suite.

	CPPUNIT_TEST_SUITE_END(); Mark end of test suite.

	Implementing tests

	CPPUNIT_ASSERT(condition) Test that condition==true.

	CPPUNIT_ASSERT_EQUAL(valueExpected, valueTest); Test that valueExpected == valueTest.

	CPPUNIT_ASSERT_DOUBLES_EQUAL(valueExpected, valueTest, tolerance); Test that valueExpected == valueTest within tolerance.

	CPPUNIT_FAIL(msg); Force test failure and include msg string in test failure message.

	CPPUNIT_ASSERT_MESSAGE(msg, condition); Include msg string in test failure message.

	CPPUNIT_ASSERT_EQUAL_MESSAGE(msg, valueExpected, valueTest);

	CPPUNIT_ASSERT_DOUBLES_EQUAL_MESSAGE(msg, valueExpected, valueTest, tolernace);

Within the test implementations, we use CPPUNIT_ASSERT(condition) where we would normally use assert(condition).
This results in the corresponding test failing and the remaining tests are executed.
If an assert(condition) fails, the test driver aborts and the remaining tests are not executed.

Listing 248 Illustration of a C++ header file for a test class without a separate data class.

#if !defined(pylith_problems_testphysics_hh)
#define pylith_problems_testphysics_hh

#include <cppunit/extensions/HelperMacros.h>

#include "pylith/problems/problemsfwd.hh" // HOLDSA Physics
#include "pylith/topology/topologyfwd.hh" // HOLDSA Mesh, Field

// Declaration of class within the pylith namespace.
namespace pylith {
 namespace problems {
 class TestPhysics;
 } // problems
} // pylith

class pylith::problems::TestPhysics : public CppUnit::TestFixture {
 CPPUNIT_TEST_SUITE(TestPhysics); // CppUnit macro used to define the `TestPhysics` test suite.

 CPPUNIT_TEST(testSetNormalizer); // CppUnit macro to add test implemented by class method.
 CPPUNIT_TEST(testSetAuxiliaryFieldDB);
 CPPUNIT_TEST(testSetAuxiliarySubfieldDiscretization);
 CPPUNIT_TEST(testObservers);
 CPPUNIT_TEST(testGetKernelConstants);
 CPPUNIT_TEST(testVerifyConfiguration);
 CPPUNIT_TEST(testCreateIntegrator);
 CPPUNIT_TEST(testCreateConstraint);
 CPPUNIT_TEST(testCreateAuxiliaryField);
 CPPUNIT_TEST(testCreateDerivedField);

 CPPUNIT_TEST_SUITE_END(); // End of test suite declaration.

public:

 // Methods to setup and clean up tests.
 void setUp(void);
 void tearDown(void);

 // Methods that implement tests. The naming convention is testMethodName.
 // All test methods must return void and not have any arguments.
 void testSetNormalizer(void);
 void testSetAuxiliaryFieldDB(void);
 void testSetAuxiliarySubfieldDiscretization(void);
 void testObservers(void);
 void testGetKernelConstants(void);
 void testVerifyConfiguration(void);
 void testCreateIntegrator(void);
 void testCreateConstraint(void);
 void testCreateAuxiliaryField(void);
 void testCreateDerivedField(void);

private:

 pylith::problems::Physics* _physics; // Test subject.
 pylith::topology::Mesh* _mesh; // Mesh for test subject.
 pylith::topology::Field* _solution; // Solution field for test subject.

}; // class TestPhysics

#endif // pylith_problems_testphysics_hh

Listing 249 Illustration of a C++ implementation file for a test class.

// Instantiate the test suite.
CPPUNIT_TEST_SUITE_REGISTRATION(pylith::problems::TestPhysics);

void
pylith::problems::TestPhysics::setUp(void) {
 // We use CPPUNIT_ASSERT() where we normally would use assert().
 _physics = new PhysicsStub();CPPUNIT_ASSERT(_physics);

 _mesh = new pylith::topology::Mesh();CPPUNIT_ASSERT(_mesh);
 _solution = new pylith::topology::Field(*_mesh);CPPUNIT_ASSERT(_solution);
} // setUp

void
pylith::problems::TestPhysics::tearDown(void) {
 delete _physics;_physics = NULL;
 delete _solution;_solution = NULL;
 delete _mesh;_mesh = NULL;
} // tearDown

void
pylith::problems::TestPhysics::testSetNormalizer(void) {
 PYLITH_METHOD_BEGIN;

 spatialdata::units::Nondimensional normalizer;
 const PylithReal lengthScale = 3.0;
 normalizer.setLengthScale(lengthScale);

 CPPUNIT_ASSERT(_physics);
 _physics->setNormalizer(normalizer);

 CPPUNIT_ASSERT_DOUBLES_EQUAL(lengthScale, _physics->_normalizer->getLengthScale(), 1.0e-6);

 PYLITH_METHOD_END;
} // testSetNormalizer

void
pylith::problems::TestPhysics::testSetAuxiliaryFieldDB(void) {
 PYLITH_METHOD_BEGIN;

 spatialdata::spatialdb::UniformDB db;
 db.setLabel("test db");

 CPPUNIT_ASSERT(_physics);
 _physics->setAuxiliaryFieldDB(&db);

 const pylith::feassemble::AuxiliaryFactory* factory = _physics->_getAuxiliaryFactory();CPPUNIT_ASSERT(factory);
 const spatialdata::spatialdb::SpatialDB* queryDB = factory->getQueryDB();CPPUNIT_ASSERT(queryDB);
 CPPUNIT_ASSERT_EQUAL(db.getLabel(),queryDB->getLabel());

 PYLITH_METHOD_END;
} // testSetAuxiliaryFieldDB

void
pylith::problems::TestPhysics::testGetKernelConstants(void) {
 PYLITH_METHOD_BEGIN;

 const size_t numConstants = 2;
 const PylithReal constantsE[numConstants] = { -1.1, 4.4 };

 CPPUNIT_ASSERT(_physics);
 _physics->_kernelConstants = pylith::real_array(constantsE, numConstants);

 const PylithReal dt = 2.0;
 const pylith::real_array& constants = _physics->getKernelConstants(dt);

 CPPUNIT_ASSERT_EQUAL(numConstants, constants.size());
 for (size_t i = 0; i < numConstants; ++i) {
 CPPUNIT_ASSERT_DOUBLES_EQUAL(constantsE[i], constants[i], 1.0e-6);
 } // for

 PYLITH_METHOD_END;
} // testGetKernelConstants

Method of Manufactured Solutions

We use the Method of Manufactured Solutions (MMS) to verify the order of accuracy of our solution to the governing equations.
See Code Verification by the Method of Manufactured Solutions [https://www.osti.gov/servlets/purl/759450] for a more detailed discussion of MMS applied to code verification for simulations of partial differential equations.
The general formulation is to assume a solution for the governing equations.
If the solution is not an exact solution, then plugging it into the governing equation will result in a residual that is a body force.
This body force can be included as an additional term in the governing equation so that the solution becomes exact.

In our application of the MMS, we test four features:

	Representation of the solution in the finite-element space;

	Residual for the governing equation is zero within some tolerance;

	A Taylor series expansion of the Jacobian provides the expected order of accuracy; and

	A finite-difference Jacobian matches the computed Jacobian within some tolerance.

In mathematical terms, the residual test is that the residual computed for a known solution is below some tolerance, \(\epsilon\),

(210)\[\begin{equation}
 || F(\vec{s}) - G(\vec{s}) || \le \epsilon,
\end{equation}\]

where \(F(\vec{s})\) is the LHS residual and \(G(\vec{s})\) is the RHS residual.
In the Taylor series Jacobian test, we verify that

(211)\[\begin{equation}
 || F(\vec{s} + \epsilon \vec{\delta s}) - F(\vec{s}) - \epsilon J \vec{v} || < \epsilon^2,
\end{equation}\]

where \(\vec{\delta s}\) is a perturbation in the soluton and \(J\) is the Jacobian matrix.

The C++ class pylith::testing::MMSTest implements these four tests.
In implementing an MMS test case, we need to provide:

	Analytical functions for each subfield of the solution;

	Analytical functions for each subfield in the auxiliary fields;

	Dirichlet boundary conditions;

	Finite-element mesh;

	Setup of the problem, including the solution, physics, boundary conditions, and the PETSc TS.

Warning

In setting up a MMS test, remember that the solution should be able to be represented in the finite-element space.
If you use a polynomial of order 2 for a subfield of the solution, then you should use a basis order of at least 2 for that subfield of the solution.

Debugging residual errors

When the residual test fails, we generally use the following procedure to diagnose the problem.

	Verify that the discretization check passes indicating accurate representation of the solution in the finite-element space.

	Run just the residual test for a single discretization and turn on the debug journal corresponding to the name of the MMS test as set by journalName in createData(); this is done via the --journal.debug=JOURNAL_NAME_1,JOURNAL_NAME_2 command line argument to the MMS test driver.

	Verify that the residual kernels show up correctly in the view of the PETSc discretization.

	Analyze the residual vector to see which degrees of freedom have nonzero terms. Look at the solution section to see what solution subfield and point are associated with those degrees for freedom.

	Check the pointwise functions for the residual and solution associated with the subfield with nonzero terms.

Debugging Jacobian errors

When one of the Jacobian tests fails, we focus on the finite-difference Jacobian test.

	Verify that the residual check passes.

	Run just the Jacobian finite-difference test for a single discretization and turn on the debug journal corresponding to the name of the MMS test as set by journalName in createData(); this is done via the --journal.debug=JOURNAL_NAME command line argument to the MMS test driver.

	Examine any differences between the hand-coded Jacobian and the finite-difference Jacobian.

	Check the differences against pointwise functions listed in the view of the PETSc discretization. Are any expected functions missing from the list?

	Isolate the error by dropping corresponding terms from the residual, Jacobian, and solution by editing the pointwise functions until the hand-coded and finite-difference Jacobians agree; that is, drop terms from the governing equation until the MMS tests pass. Then, add the terms back into the governing equation (residual, Jacobian, and solution pointwise functions) one by one, fixing errors as they are detected.

Example

In tests/mmstests/linearelasticity/nofaults-2d, we create a suite of MMS tests that all use a single material (Elasticity), a single Dirichlet boundary condition, and a data object to hold test-specific parameters.
The pylith::mmstests::TestLinearElasticity object sets up the MMS test using data provided for each specific MMS test case.
The individual test cases, such as UniformStrain2D, provide the problem-specific parameters, such as analytical functions for the solution, auxiliary fields, and boundary conditions.

Warning

The quadrature order must be the same across all solution subfields and auxiliary subfields.

TODO

Add a simple test case that introduces known errors into the discretization, residual, and Jacobian to illustrate these steps.

Running C++ unit tests and MMS tests

Running C++ unit tests

The C++ unit tests (libtests) are implemented using CppUnit and a common test driver, pylith::testing::TestDriver in tests/src/driver_cppunit.cc.
TestDriver provides support for command line arguments to control the tests run and set PETSc options.
All of the C++ unit test or MMS test executables support the following command line arguments:

	--help Show help for command line arguments.

	--list List tests run by the executable.

	--tests=TESTS Run subset of the tests. TESTS is a comma separated list of tests.

	--petsc VALUE=ARG Set PETSc option -VALUE=ARG.

	--journal.info=NAME Activate Pythia info journal for NAME.

	--journal.debug=NAME Activate Pythia debug journal for NAME.

	--journal.warning=NAME Activate Pythia warning journal for NAME.

Listing 250 Examples of using command line arguments in running C++ unit tests.

$ cd tests/libtests/problems

List tests
$./test_problems --list

Run all TestObserversPhysics tests.
$./test_problems --tests=pylith::problems::TestObserversPhysics

Run TestObserversPhysics testVerifyObservers and testNotifyObservers tests.
$./test_problems --tests=pylith::problems::TestObserversPhysics::testVerifyObservers,pylith::problems::TestObserversPhysics::testNotifyObservers

Turn on timedependent info journal.
$./test_problems --journal.info=timedependent

Turn on timedependent debug journal.
$./test_problems --journal.debug=timedependent

Running MMS tests

The Method of Manufactured Solutions (MMS) tests are implemented using Catch2 and a common test driver, pylith::testing::TestDriver in tests/src/driver_catch2.cc.
TestDriver provides support for command line arguments to control the tests run and set PETSc options.
All of the C++ unit test or MMS test executables support the following command line arguments:

	--help Show help for command line arguments.

	--list-tests List tests run by the executable.

	--petsc VALUE=ARG Set PETSc option -VALUE=ARG.

	--journal.info=NAME Activate Pythia info journal for NAME.

	--journal.debug=NAME Activate Pythia debug journal for NAME.

	--journal.warning=NAME Activate Pythia warning journal for NAME.

Listing 251 Examples of using command line arguments in running C++ and MMS tests.

$ cd tests/mmstests/linearelasticity/nofaults-2d

List tests
$./mmstest_linearelasticity_nofaults2d --list-tests

Run all UniformStrain2D tests.
$./mmstest_linearelasticity_nofaults2d [UniformStrain2D]

Run all UniformStrain2D residual tests
$./mmstest_linearelasticity_nofaults2d [UniformStrain2D][testResidual]

Turn on timedependent info journal.
$./mmstest_linearelasticity_nofaults2d --journal.info=timedependent

Turn on timedependent debug journal.
$./mmstest_linearelasticity_nofaults2d --journal.debug=timedependent

Using the debugger

The executables in the build directory are shell script wrappers created by libtool.
The underlying binary executables are in the .libs directory.
When using the debugger, pass the binary executable to the debugger.
For example, gdb .libs/test_problems.

Using valgrind

Run valgrind on the test_problems executable
$ valgrind --log-file=valgrind_problems.log \
 --suppressions=$PYLITH_DIR/share/valgrind-python.supp .libs/test_problems

Python unit tests

We use the standard Python unittest module to implement the Python unit tests.

In reimplementing the Python unit tests in tests/pytests, we have setup bare bones tests that simply check that the objects are instantiated successfully, configure executes without errors, and factory functions return correct objects.
These tests are implemented in the pylith.testing.UnitTestApp Python object.
Tests of individual classes need only specify the class and the factory function.
We plan to expand these tests to include verification that information is properly transferred from Python to the underlying C++ object (if it exists).

Full-scale tests

The full-scale tests are constructed in Python, making use of the standard Python unittest module.
A full-scale test involves running a PyLith simulation and using Python code to check output against a known solution.
Whenever possible, we simulate simple boundary value problems with analytical solutions.
We run some full-scale tests in parallel on a small number of processes.

The first step is to construct a PyLith simulation (mesh, parameter files, and spatial databases) that solves the desired boundary value problem with a known solution.
In constructing the simulation, we create Python scripts that generate the spatial database files.
This makes it easy to synchronize any changes between the problem specification and the known solution.

Once we have a PyLith simulation that appears to run correctly, we construct a Python object that inherits from pylith.testing.FullTestApp.
See tests/fullscale/linearelasticity/nofaults-2d/TestAxialDisp.py for an example.
This Python object sets up the a PyLith simulation, runs the simulation, and defines methods that check fields in the output files.
In most cases we solve the boundary value problems in 2D with both quadrilateral and triangular meshes and in 3D with both tetrahedral and hexahedral meshes.

When multiple full-scale tests use the same meshes, we place them in the same directory and use dictionaries in a meshes.py file to define the mesh information.

Command line arguments

The pylith.testing.FullTestApp Python application has two optional command line arguments:

	--verbose (int) Set verbosity level. Level > 0 will display which fields are being checked.

	--skip-pylith-run (bool) Skip running the PyLith simulation and only check the existing output files against the expected results. This argument is useful when debugging the checks.

Using the debugger

To start the gdb debugger when running the PyLith application, simply add the command line argument --petsc.start_in_debugger.
To use an alternative debugger, such as lldb, append the name of the debugger executable, for example --petsc.start_in_debugger=lldb.
By default, PETSc will try to start the debugger in an xterm.
To use an alternative terminal program, use the command line argument --petsc.debug_terminal=TERMINAL.
For example for the GNOME terminal, use --petsc.debug_terminal="gnome-terminal -x".

Using valgrind

Running valgrind on a the PyLith application, including full-scale tests, requires using an additional argument (--trace-children=yes), because the PyLith application forks a subprocess to do the computation.

Run valgrind on the PyLith executable
$ valgrind --trace-children=yes \
 --suppressions=$PYLITH_DIR/share/valgrind-python.supp pylith step01.cfg

Example

TODO

Walk through an example of a full-scale test.

Debugging tools

VS Code integration

You can use the VS Code debugger with C++ unit tests (libtests), MMS Tests, and PyLith simulations.

C++ unit test

	Click on Run and Debug in the left sidebar of the VS Code window.

	At the top of the panel, select the test suite to run.

	Click on the green triangle next to the name of the selected test suite.

MMS test

	Click on Testing in the left sidebar of the VS Code window.

	Click on the Debug Test icon that pops up when you mouse over the name of the test you want to run.

Note

Once we migrate the C++ unit tests to Catch2, they will also show up in list of tests under Testing.

PyLith simulation

We provide a configuration in launch.json to attach the VS Code debugger to a running process, such as a PyLith simulation.

	To attach the debugger, start the PyLith simulation while adding the command line arguments --petsc.stop_for_debugger --petsc.pause_debugger=10 (10 corresponds to the number of seconds the program will wait for you to attach the debugger before continuing).

	Note the process id that is printed to stdout.

	Select Run and Debug in the left sidebar of the VS Code window.

	Select Attach to process at the top of the panel.

	Select the mpinemesis process with the process id that matches the one printed to stdout.

Tip

These PETSc command line arguments used to attach the debugger are provided in $PREFIX/share/settings/attach_debugger.cfg where $PREFIX is the directory where PyLith is installed.

Debugger quick reference

Please see the gdb and lldb documentation for detailed instructions.
Here we illustrate some common basic commands.

Listing 252 Debugging with gdb

Set breakpoint at line 150 of Material.cc
(gdb) b Material.cc:150

Set breakpoint at exception throw
(gdb) catch throw

Show arguments for the current frame
(gdb) info args

Show local variables for the current frame
(gdb) info locals

Show the contents of a local variable: p VARIABLE
(gdb) p numFields

Show the contents of local array: p POINTER[0]@SIZE
Print array of 4 values pointed to by variable values
(gdb) p values[0]@4

Print stack trace
(gdb) backtrace

Listing 253 Debugging with lldb

(lldb) b Material.cc:150

Set breakpoint at exception throw
(lldb) break set -E C++

Show local variables
(lldb) frame variable

Show the contents of a local variable: frame variable VARIABLE
(lldb) frame variable numFields
Alternatively
(lldb) p numFields

Show the contents of an array of values: parray SIZE POINTER
Show the contents of array of 10 values pointed to by the variable values.
(lldb) parray 10 values

Listing 254 Printing PETsc and PyLith objects (same for gdb and lldb)

Print PETSc section "section"
(gdb) call PetscSectionView(section, 0)

Print PETSc DS "ds"
(gdb) call PetscDSView(ds, 0)

Print PyLith mesh "mesh"
Formats:
"::ascii_info_detail" - ASCII to stdout
":mesh.txt:ascii_info_detail" - ASCII to mesh.txt
":mesh.tex:ascii_latex" - LaTeX to mesh.tex
":mesh.vtk:ascii_vtk" - VTK to mesh.vtk
(gdb) call mesh.view("::ascii_info_detail")

Print PyLith field "field"
Options values:
0: metadata only
1: Metadata and section
2: Metadata and PETSc vector
3: Metadata, section, and PETSc vector
call field.view("MY LABEL", pylith::topology::Field::ViewOptions(1))

Valgrind quick reference

Valgrind is a useful tool for finding memory leaks, use of uninitialized variables, and invalid reads and writes to memory.
When running valgrind there are three very useful command line arguments:

	--log-filename=FILENAME Send output to FILENAME. This does not work when running the PyLith
application because each new process wipes out the log file.

	----suppressions=FILE Omit errors matching given patterns when reporting errors. Valgrind often reports lots of errors arising from the way OpenMPI and Python handle memory allocation and deallocation. We usually use the Python suppression file share/valgrind-python.supp when running valgrind.

	--trace-children=yes Continue tracing errors in subprocesses. This is important when running valgrind on the PyLith executable, as the actual computation is done in a forked process.

Viewing fields

In addition to using the debugger to inspect code and variables, it is often helpful to print fields to stdout or inspect where a computed field does not match the expected field.
Turning on this type of output is usually done by activating debug journals via command line arguments.

Viewing a field will print the subfield metadata, the layout of the field, and the field values.
See PetscSection and PetscVec for how to interpret the layout of a field.

Listing 255 Output from Field::view() for solution field with displacement and fluid pressure subfields.

Viewing field 'solution' Solution Field.
 Subfields: # Order of subfields is given by the index, not the order listed.
 Subfield displacement, index: 0, components: displacement_x displacement_y, scale: 1000, basisOrder: 1, quadOrder: 1
 Subfield fluid_pressure, index: 2, components: fluid_pressure, scale: 0.1, basisOrder: 1, quadOrder: 1
 Subfield velocity, index: 1, components: velocity_x velocity_y, scale: 100, basisOrder: 1, quadOrder: 1
 dimensionalize flag: 0
DM Object: 1 MPI processes
 type: plex
DM_0xe6a550_38 in 2 dimensions:
 0-cells: 5
 1-cells: 8
 2-cells: 4
Labels:
 boundary_bottom: 1 strata with value/size (1 (3))
 boundary: 1 strata with value/size (1 (8))
 material-id: 1 strata with value/size (24 (4))
 depth: 3 strata with value/size (0 (5), 1 (8), 2 (4))
PetscSection Object: 1 MPI processes
 type not yet set
3 fields
 field 0 with 2 components # displacement vector field
Process 0:
 (0) dim 0 offset 0
 (1) dim 0 offset 0
 (2) dim 0 offset 0
 (3) dim 0 offset 0
 (4) dim 2 offset 0 constrained 1 # y degree of freedom is constrained
 (5) dim 2 offset 5 constrained 1 # y degree of freedom is constrained
 (6) dim 2 offset 10
 (7) dim 2 offset 15
 (8) dim 2 offset 20
 (9) dim 0 offset 25
 (10) dim 0 offset 25
 (11) dim 0 offset 25
 (12) dim 0 offset 25
 (13) dim 0 offset 25
 (14) dim 0 offset 25
 (15) dim 0 offset 25
 (16) dim 0 offset 25
 field 1 with 2 components # velocity vector field
Process 0:
 (0) dim 0 offset 0
 (1) dim 0 offset 0
 (2) dim 0 offset 0
 (3) dim 0 offset 0
 (4) dim 2 offset 2
 (5) dim 2 offset 7
 (6) dim 2 offset 12
 (7) dim 2 offset 17
 (8) dim 2 offset 22
 (9) dim 0 offset 25
 (10) dim 0 offset 25
 (11) dim 0 offset 25
 (12) dim 0 offset 25
 (13) dim 0 offset 25
 (14) dim 0 offset 25
 (15) dim 0 offset 25
 (16) dim 0 offset 25
 field 2 with 1 components # pressure scalar field
Process 0:
 (0) dim 0 offset 0
 (1) dim 0 offset 0
 (2) dim 0 offset 0
 (3) dim 0 offset 0
 (4) dim 1 offset 4
 (5) dim 1 offset 9
 (6) dim 1 offset 14
 (7) dim 1 offset 19
 (8) dim 1 offset 24
 (9) dim 0 offset 25
 (10) dim 0 offset 25
 (11) dim 0 offset 25
 (12) dim 0 offset 25
 (13) dim 0 offset 25
 (14) dim 0 offset 25
 (15) dim 0 offset 25
 (16) dim 0 offset 25
Proc 0 local vector # 5 nondimensionalized values per point: displacement (2), velocity (2), pressure (1)
Vec Object: unknown 1 MPI processes
 type: seq
-0.999 # offset 0, point 4, x-displacement
-4.2 # offset 1, point 4, y-displacement
-9.99 # offset 2, point 4, x-velocity
-9.99 # offset 3, point 4, y-velocity
-9990. # offset 4, point 4, pressure
-0.999 # offset 5, point 5, x-displacement
0.6
-9.99
-9.99
-9990.
-0.999 # offset 10, point 6, x-displacement
0.
-9.99
-9.99
-9990.
-0.999 # offset 15, point 7, x-displacement
-0.6
-9.99
-9.99
-9990.
-0.999 # offset 20, point 8, x-displacement
4.2
-9.99
-9.99
-9990.

Viewing differences

In tests in which we compare a computed field against one from an analytical solution using
DMPlexComputeL2DiffLocal() and the fields do not agree, it is generally helpful to determine which pieces do not agree.
The DMPlex object contains an internal switch to print the point-by-point differences while computing the norm.
This switch can be activated using the --petsc dm_plex_print_l2=1 command line argument in the C++ and MMS tests.

Listing 256 Debugging output from DMPlexComputeL2DiffLocal()

Cell 0 Element Solution for Field 0 # displacement vector field
 | -0.999 | # Values of solution field variable at vertices of cell 0
 | -4.2 |
 | -0.999 |
 | 0. |
 | -0.999 |
 | -0.6 |
 elem 0 field 0 diff 0. # Differences at quadrature points with respect to field given by analytical function
 elem 0 field 0 diff 6.27226e-32
 elem 0 field 0 diff 2.24281e-33
 elem 0 field 0 diff 8.97125e-33
 elem 0 field 0 diff 0.
 elem 0 field 0 diff 0.
 elem 0 field 0 diff 2.24281e-33
 elem 0 field 0 diff 0.
Cell 0 Element Solution for Field 1 # velocity field vector field
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
 elem 0 field 1 diff 0.
Cell 0 Element Solution for Field 2 # pressure scalar field
 | -9990. |
 | -9990. |
 | -9990. |
 elem 0 field 2 diff 0.
 elem 0 field 2 diff 0.
 elem 0 field 2 diff 0.
 elem 0 field 2 diff 0.
 elem 0 diff 7.61795e-32
Cell 1 Element Solution for Field 0
 | -0.999 | # Values of solution field variable at vertices of cell 1
 | 0.6 |
 | -0.999 |
 | 0. |
 | -0.999 |
 | -4.2 |
 elem 1 field 0 diff 0.
 elem 1 field 0 diff 3.92016e-33
 elem 1 field 0 diff 2.24281e-33
 elem 1 field 0 diff 1.4354e-31
 elem 1 field 0 diff 0.
 elem 1 field 0 diff 0.
 elem 1 field 0 diff 2.24281e-33
 elem 1 field 0 diff 0.
Cell 1 Element Solution for Field 1
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 | -9.99 |
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
 elem 1 field 1 diff 0.
Cell 1 Element Solution for Field 2
 | -9990. |
 | -9990. |
 | -9990. |
 elem 1 field 2 diff 0.
 elem 1 field 2 diff 0.
 elem 1 field 2 diff 0.
 elem 1 field 2 diff 0.
 elem 1 diff 1.51946e-31
... # Output continues for values in other cells

Running tests in CI Docker containers

If one or more of the CI test runners report an error or someone reports an error using a specific Linux distribution, it is often convenient to run a CI test runner interactively on your local machine using Docker. Currently, we maintain Docker images containing all of the PyLith dependencies for the following Linux distributions:

	debian-stable

	debian-testing

	ubuntu-20.04

	ubuntu-22.04

	ubuntu-23.04

	fedora-37

	fedora-38

	centos-7

	rockylinux-8

	rockylinux-9

You need to checkout the PyLith branch that you want to test and be in the top-level PyLith source directory.

Change to the top-level PyLith source directory.
cd $TOP_SRCDIR/pylith

Set the name of the Linux distribution to use to the BASE_IMAGE environment
variable.
BASE_IMAGE=debian-stable

Build a new Docker image with the PyLith source code. The base image will
be downloaded as necessary. The "--target build" command line argument
will run "make install" but not "make check". To stop at the configure step,
use "--target src".
$ docker build \
 -t pylith-debug \
 --build-arg BASE_IMAGE=registry.gitlab.com/cig-pylith/pylith_installer/testenv-$BASE_IMAGE \
 --target build \
 -f docker/pylith-testenv .

Run the Docker image interactively. This allows you to run "make check" or
run tests manually, potentially making use of the gdb debugger and valgrind.
$ docker run -ti --rm pylith-debug /bin/bash

References

[AWK07]
B. Aagaard, C. Williams, and M. Knepley. Pylith: a finite-element code for modeling quasistatic and dynamic crustal deformation. In Eos Trans. Fall Meet. Suppl., volume 88. AGU, 2007. Abstract T21B-0592.

[AHH01a]
Brad T. Aagaard, John F. Hall, and Thomas H. Heaton. Characterization of near-source ground motions with earthquake simulations. Earthquake Spectra, 17(2):177–207, May 2001.

[AHH01b]
Brad T. Aagaard, Thomas H. Heaton, and John F. Hall. Dynamic earthquake ruptures in the presence of lithostatic normal stresses: implications for friction models and heat production. Bulletin of the Seismological Society of America, 91(6):1765–1796, December 2001.

[Bat95]
K.-J. Bathe. Finite-Element Procedures. Prentice Hall, Upper Saddle River, New Jersey, 1995. 1037 pp.

[Bru70]
James N. Brune. Tectonic stress and spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75:4997–5009, September 10 1970.

[CH23]
Colin Cotter and David Ham. Finite Elements analysis and implementation. Imperial College, London, 2023. URL: https://finite-element.github.io/.

[DC93]
E. Detournay and Alexander H.-D. Cheng. Fundamentals of poroelasticity. In Charles Fairhurst, editor, Analysis and Design Methods, pages 113–171. Pergamon, Oxford, 1993. doi:10.1016/B978-0-08-040615-2.50011-3 [https://doi.org/10.1016/B978-0-08-040615-2.50011-3].

[DCC13]
Boyang Ding, Alexander H-D Cheng, and Zhanglong Chen. Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition. Journal of Applied Mechanics, 2013.

[Far21]
Patrick E. Farrell. Finite Element Methods for PDEs. Oxford, 2021. URL: https://people.maths.ox.ac.uk/farrellp/femvideos/notes.pdf.

[HWJ12]
Hayes, G. P., D. J. Wald, and R. L. Johnson. Slab1.0: a three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 2012. doi:10.1029/2011JB008524 [https://doi.org/10.1029/2011JB008524].

[KK87]
S. H. Kirby and A. K. Kronenberg. Rheology of the lithosphere: selected topics. Reviews of Geophysics, 25:1219–1244, 1987.

[KB87]
M. Kojic and K.-J. Bathe. The `effective stress-function' algorithm for thermo-elasto-plasticity and creep. Int. J. Num. Meth. Eng, 24:1509–1532, 1987.

[LAH06]
P. Liu, R. J. Archuleta, and S. H. Hartzell. Prediction of broadband ground-motion time histories: Hybrid low/high- frequency method with correlated random source parameters. Bulletin of the Seismological Society of America, 96(6):2118–2130, December 2006. doi:10.1785/0120060036 [https://doi.org/10.1785/0120060036].

[Oka92]
Y. Okada. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018–1040, 1992.

[Pat94]
W. S. B. Paterson. The Physics of Glaciers. Elsevier Science Ltd., Oxford, third edition edition, 1994. 480 pp.

[Pre68]
J. H. Prentice. Dimensional problem of the power law in rheology. Nature, 217:157, 1968. doi:10.1038/217157a0 [https://doi.org/10.1038/217157a0].

[SS86]
Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986. doi:10.1137/0907058 [https://doi.org/10.1137/0907058].

[SP78]
J. C. Savage and W. H. Prescott. Asthenosphere readjustment and the earthquake cycle. Journal of Geophysical Research, 83:3369–3376, 1978.

[Tay03]
R. L. Taylor. FEAP–A Finite Element Analysis Program. version 7.5 theory manual edition, 2003. 154 pp.

[ZT00]
O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Volume Volume 2: Solid Mechanics. Butterworth-Heinemann, Oxford, fifth edition edition, 2000.

Index

MeshIOLagrit

	Full name:

	pylith.meshio.MeshIOLagrit

	Journal name:

	meshiolagrit

Reader for finite-element meshes generated by LaGriT.

Warning

The coordinate system associated with the mesh must be a Cartesian coordinate system, such as a generic Cartesian coordinate system or a geographic projection.

Danger

The PyLith developers have not used LaGriT since around 2008 and there have been a few releases since then so the interface may not be up to date.

Implements MeshIOObj.

Pyre Facilities

	coordsys: Coordinate system associated with mesh.

	current value: ‘cscart’, from {default}

	configurable as: cscart, coordsys

Pyre Properties

	filename_gmv=<str>: Name of mesh GMV file.

	default value: ‘mesh.gmv’

	current value: ‘mesh.gmv’, from {default}

	validator: <function validateFilenameGmv at 0x1248ef0d0>

	filename_pset=<str>: Name of mesh PSET file.

	default value: ‘mesh.pset’

	current value: ‘mesh.pset’, from {default}

	validator: <function validateFilenamePset at 0x1248ef160>

	flip_endian=<bool>: Flip endian type when reading/writing binary files.

	default value: False

	current value: False, from {default}

	io_int32=<bool>: PSTE files use 32-bit integers.

	default value: True

	current value: True, from {default}

	record_header_32bit=<bool>: Fortran record header is 32-bit.

	default value: True

	current value: True, from {default}

Example

Example of setting MeshIOLagrit Pyre properties and facilities in a parameter file.

[pylithapp.mesh_generator.reader]
filename_gmv = mesh_tet.gmv
filename_pset = mesh_tet.pset
coordsys.space_dim = 3

ParaView Python Scripts

Note

New in v2.2.1

In some of the examples (currently only the 2D and 3D subduction zone examples) we provide ParaView Python scripts for visualizing the input finite-element mesh and the PyLith simulation results.
Some of these scripts are very generic and are easily reused; others are more specific to the examples.
The primary advantage of the ParaView Python scripts is that they make it easy to replicate visualizations, whether they are produced by the developers and regenerated by users.

There are several different ways to run the ParaView Python scripts:

	Within the ParaView GUI, select View\(\rightarrow\)Python Shell.
Override the default parameters as desired (which we will discuss later in this section).
Click on the Run Script button, and navigate to the select the script you want to run.

	From a shell (terminal window) start ParaView from the command line with the --script=FILENAME where FILENAME is the relative or absolute path to the ParaView Python script.
Note that this method does not provide a mechanism for overriding the default parameters.

	Run the ParaView Python script directly from a shell (terminal window) via the command line.
You can use command line arguments to override the default values for the parameters.
If pvpython is not in your PATH, then you can run a script called MY_SCRIPT using: PATH_TO_PVPYTHON/pvpython MY_SCRIPT.py

Tip

Running the ParaView Python script from within the ParaView GUI allows further manipulation of the data, which is not possible when running the ParaView Python script outside the ParaView GUI.
When run outside the ParaView GUI, the interaction is limited to rotating, translating, and zooming.

Important

The ParaView Python scripts run Python via pvpython, which is a customized version of the Python interpreter included in the ParaView distribution.
This is different from python provided with your operating system and/or the one included in the PyLith distribution.
This means you cannot, in general, import Python modules provided with the PyLith distribution into ParaView.

Tip

In creating the ParaView Python scripts, we performed the steps within the GUI while capturing the commands using Tools→Start Trace and then Tools→Stop Trace.
This makes it very easy to create the Python script. Note that we have omitted superfluous commands in the trace when transferring the trace into a Python script. See the ParaView documentation for additional information about the Python API.

Overriding Default Parameters

We setup the ParaView Python scripts, so that when they are run from the command line in the main directory for a given example, e.g., examples/3d/subduction, the script will produce the output discussed in the manual.

Warning

If you start ParaView from the macOS Dock or a similar method, like a shortcut, then you will need to override at least the default value for the output directory.

In order to override the default values from within the ParaView GUI, simply set the values within the Python shell.
For example, to set the value of the variable OUTPUT_DIR to the absolute path of the output files from a simulation,

ParaView Python shell

Set OUTPUT_DIR to $HOME/pylith/examples/box-2d/output
>>> import os
>>> OUTPUT_DIR = os.path.join(os.environ["HOME"], "pylith", "examples", "box-2d", "output")

To set the value of the variable EXODUS_FILE to the absolute path of the input file,

ParaView Python shell

>>> import os
>>> EXODUS_FILE = os.path.join(os.environ["HOME"], "pylith", "examples", "subduction-3d", "mesh", "mesh_tet.exo")

In these two examples we use the Python os module to get the absolute path of the home directory and append the path to the Exodus file with the appropriate separators for the operating system.

Important

In each of the ParaView Python scripts, the names of the variables and their default values are given by the DEFAULTS dictionary near the top of the file.

 Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.ZeroDB

 Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

 Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

 Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

 Features

	Quadrilateral cells

	pylith.meshio.MeshIOAscii

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	backward Euler time stepping

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.ZeroDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	LU preconditioner

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.ZeroDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	backward Euler time stepping

	LU preconditioner

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

 Features

	Quasi-static problem

	LU preconditioner

	pylith.materials.Poroelasticity

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.problems.SolnDispPresTracStrain

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	pylith.meshio.DataWriterHDF5

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.UniformDB

 Features

	Quasi-static problem

	LU preconditioner

	pylith.materials.Poroelasticity

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.problems.SolnDispPresTracStrain

	pylith.problems.InitialConditionDomain

	pylith.bc.DirichletTimeDependent

	pylith.bc.NeumannTimeDependent

	pylith.meshio.DataWriterHDF5

	spatialdata.spatialdb.SimpleGridDB

	spatialdata.spatialdb.UniformDB

	Poroelasticity with porosity state variable

	Isotropic linear poroelasticity with reference state

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.GravityField

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.GravityField

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.IncompressibleElasticity

	spatialdata.spatialdb.GravityField

	field split preconditioner

	Schur complement preconditioner

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.bc.NeumannTimeDependent

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearMaxwell

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.ZeroDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	pylith.materials.Elasticity

	pylith.materials.IsotropicPowerLaw

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	spatialdata.spatialdb.UniformDB

	spatialdata.spatialdb.CompositeDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	spatialdata.spatialdb.SimpleDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasi-static simulation

	spatialdata.spatialdb.SimpleDB

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

 Features

	Triangular cells

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.faults.FaultCohesiveKin

	pylith.faults.KinSrcStep

	field split preconditioner

	Schur complement preconditioner

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.UniformDB

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	“Green’s functions”

	Fault slip impulses

 Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	pylith.faults.KinSrcStep

	pylith.bc.ZeroDB

 Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Static simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.UniformDB

	pylith.faults.KinSrcConstRate

	pylith.bc.ZeroDB

 Features

	Triangular cells

	field split preconditioner

	Schur complement

	pylith.meshio.MeshIOPetsc

	pylith.problems.TimeDependent

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	Quasitatic simulation

	pylith.faults.FaultCohesiveKin

	pylith.bc.DirichletTimeDependent

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.UniformDB

	pylith.faults.KinSrcConstRate

	pylith.bc.ZeroDB

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	spatialdata.spatialdb.SimpleDB

	Static simulation

	

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcStep

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcConstRate

 Features

	Tetrahedral cells

	pylith.meshio.MeshIOCubit

	pylith.problems.TimeDependent

	pylith.meshio.OutputSolnBoundary

	pylith.meshio.DataWriterHDF5

	pylith.bc.DirichletTimeDependent

	pylith.bc.ZeroDB

	spatialdata.geocoords.CSGeo

	pylith.materials.Elasticity

	pylith.materials.IsotropicLinearElasticity

	pylith.materials.IsotropicLinearMaxwell

	spatialdata.spatialdb.CompositeDB

	spatialdata.spatialdb.SimpleDB

	spatialdata.spatialdb.SimpleGridDB

	Quasi-static simulation

	pylith.faults.KinSrcConstRate

 _images/step02-solution.png
1.0 yr

Time:

(W) JusWIBODIdSIP X

0.0e+00
-1.6e+00

0
S -

_images/step02-solution1.jpg

_images/step02-solution.jpg
1.0 yr

Time:

(W) JusUIEODIdsIP-X

1.2e+00

} |

-1.2e+00

_images/step02-solution2.jpg
\/
Bs

o

<\
7

\/

=
P

N

\/
V4

\VA

VA
\V4

VAN

AVAVAN
0
&

VAN

AVAY

VAV

AR
VAN

>t
z§'i¥ Rk

A
7

7
3

N
\V
&

YA A A A AT AT AT AR
7

NS

_images/step02-solution3.jpg
Time: 100.0 yr

(W) usweoDdsip A

_images/gmsh-tri1.png
7N
K o
NI
ZaN SVAVAY ¢
AVAVAVA TSV, <
WAVAVAVA%X%C K A
fNAVAVAVAVAVAV VAN
PAVAVAVAVAVAVAVASGON \AVAVAVAN
DAY AVAVAATA AT s VA
OORRARE A
SRR 7
D PV AVAVAVAVAVA O VA
D ANAVAVAVAVAVAY
PvAVAVAVAVAYA K VAYAVAVAVAVAVAN
AR NAVAVAVAVAVAVS
PEORSERREE O CvAVAVAV
DANAVAVAVAVATAYNIS R AVAVAVAVAVAVA)
Nyﬂyg%}t vgmvmm‘v
e e
gmygﬁ,,m CEOEEE
A RO
SR SEE
lﬂ%‘%’gm [
SOLRSEEE]
IR
2 %

_images/gmsh-tri2.png
AYAVY
457
4

Av

5
UK
AVAVAY

"VAVAVAVAg’

AVAN

N/
5
VAV

VAN

VAYA

o

%
SR

AVAYAviSi

>
vl
vav
VLY

¥, iy,

AV
b

e

AVAVAY
AVAVATATA

Ve
s

AT

VAVAVA
Vild

% AVAYAVAVavav,

TAVAVAVA

AV
.
AYAVAv,

/N
AVAVAY
i,

N

VAVAVA
AVAY

VAVAV
N
A\

N/

vas
R

Vi

o
‘ h" AVAY

VAN

£X
-
b

PaVAN

TAVAYAVAVAVANANAVAVAVAVAVATES
vmv‘v‘uuuuv‘uvgﬂﬂﬂﬂﬂﬂ%%

VAT VVAVAVAY
SRR
R RS VAN
ARSI SRR
TR
AT
s A S i T A
FAVAVAVAVATAYAVAY LERRS,
D LA s A v YAVAVAVAVAS
umwmgﬁvnnﬂnuuvm»m;¢uﬁ i L
"""'%X%AVAVMAVA%

AVAVAVAY

VAVAVAVAVAVAVAS
NNAVAVAVAEggi

K
\VAV

N/
FAVAVAVAYAS
FAvAvATATS

Vi VAVAVAYA
B A Y S AVAVAVAYAVA

VA
A NS TAYAA

AZAVAYAN
VAVAVAVAVAVAVAVAVAVE 5
R A,

TEVATAYAY v&ﬂ"‘ b

_images/intermediate.png

_images/material_auxiliarylayout.png
subfields associated with governing equation subfields associated with bulk rheology

w\ 1: body force 2: gravity field 3: reference stress | 4: referencestrainM

required optional optional required

_images/meshtopology.png
Conventional Numbering
3 4

Cells

Vertices 0 1 2 3 4

Cells

Edges

Vertices

1

2

1

DMPIlex Numbering
15 R

_images/paramgui_version.png
[PyLith Parameters X

& C (0 © 127.0.0.1:9000

PyLith Parameter Viewer Name of J]SON parameter file loaded
Choose File | sample_parameiérs json | Reload

Parameters time stamp: Tue Jan 17 2017 12:26:44 GMT-0800 (PST)

Version | Parameters Time stamp from when file was generated

Platform
Hostname : localhost
Operating system : Linux
Kemnel : 4.4.0-59-generic
Version : #80~14.04.1-Ubuntu SMP Fri Jan 6 18:02:02 UTC 2017
Processor : x86_64
Machine : x86_64
PyLith
Configured : 2016-12-21 12:05:22 -0800
GIT branch : next

GIT revision : v2.1.4-3-gf0a82d2 GIT information indicates a development version.
GIT hash : f0a82d205ce564f4b89df42bab9e84ac6919d5ae

Dependencies

PETSc
Configured : 2016-11-03 12:19:17 -0500
GIT branch : knepley/pylith
GIT revision : v3.7.4-2198-g5eaef4
PETSC_DIR : /tools/common/petsc-dev
PETSC_ARCH : arch-gcc-4.8.2_debug

MPI
Standard : 3.0
Implementation : OpenMPI
Version : 1.8.1

Spatialdata

Configured : 2016-11-03 16:20:01 -0700

GIT branch : master

GIT revision : v1.9.7-1-g1b34bdf

GIT hash : 1b34bdfaed31b2c361fbe797a5c833df01d30200
Proj

Version : 480
HDF5

Version : 1.8.11

NetCDF
Version : 4.4.1

Python

_images/paramgui_parameters.png
[PyLith Parameters X
& C (0 © 127.0.0.1:9000

PyLith Parameter Viewer
Choose File |sample_parameters.json | Reload

Parameters time stamp: Tue Jan 17 2017 12:26:44 GMT-0800 (PST)

Version Parameters
Component Hierarchy
B Tail [Gai 0 Click on the facility name to
|Expanoa’] [Cotapsea’ collapse/expand the leaves
4 application = <pylith.app€ PyLithApp.InfoApp object at 0x7f084b52c450>
A launcher = <mpifauncherMPICH.LauncherMPICH object at 0x7f084b454190>
4 mesh_generator = <pylith.topology.MeshImporter.Meshimporter object at
0x7f084b4a7810>
A distributor = <pylith.topology. Distributor. Distributor; proxy of <Swig Object
of type ‘pylith::topology::Distributor * at 0x7f084b453240> >
4 data writer = <pylith.meshio.DataWriterVTK DataWriterVTK; proxy
of <Swig Obiject of type 'pylith::meshio::DataWriterVTK * at
0x7f084b436f90> >
A refiner = <pylith.topology.MeshRefiner. MeshRefiner object at
0x7f084h3e2550>
A reader = <pylith.meshio.MeshlOCubit.MeshIOCubit; proxy of <Swig Object
of type ‘pylith::meshio::MeshlOCubit * at 0x7f084b4531b0> >
A coordsys = <spatialdata.geocoords.CSCart.CSCart; proxy of <Swig
Object of type ‘spatialdata::geocoords::CSCart *' at 0x7f084b453090> >
4 petsc = <pylith.utils. PetscManager. PetscManager object at 0x7f084b442ed0>
4 job = <pyre.schedulers.Job.Job object at 0x7f084b442790>
4 scheduler = <pyre.schedulers.SchedulerNone.SchedulerNone object at
0x7f084b454850>
4 problem = <pylith.problems. TimeDependent. TimeDependent object at
0x7f084b44a150>
4 normalizer =
<spatialdata.units.NondimElasticQuasistatic.NondimElasticQuasistatic; proxy of

<Swig Object of type 'spatialdata::units::Nondimensional * at 0x7f084b3c6f30>
>

A bc = <pyre.inventory.FacilityArrayFacility. FacilityArray object at
0x7f084b3c2790>

A z_neg = <pylith.bc.DirichletBC.DirichletBC; proxy of <Swig Object of
type ‘pylith::be:DirichletBC * at 0x7f084b37f0f0> >
A db_change = <pylith.utils.NulComponent.NullComponent
object at 0x7f084b0ab2d0>
A db_rate = <pylith.utils.NullComponent.NullComponent object at
0x7f084b0ab110>
A th_change = <pylith.utils.NullComponent.NullComponent object
at 0x7f084b0ab3d0>

4 perf logger = <pylith.perf.MemoryLoaager.MemoryLoaager obiect

Details for Selected Component
¥ Show description ¥ Show location

No component selected.

Click on a component to display its parameters.

_images/paramgui_startup.png
[PyLith Parameters X
& C (0 © 127.0.0.1:9000
PyLith Parameter Viewer

Choose File No file chosen Reload

Parameters time stamp: N/A

Version Parameters

c t Hierarch
omponent Hierarchy Details for Selected Component

Expand all| |Collapse all
No components.

¥ Show description ¥ Show location

No component selected.

_images/paramgui_detail.png
[PyLith Parameters X
& C (0 © 127.0.0.1:9000

PyLith Parameter Viewer

Choose File |sample_parameters.json | Reload

Parameters time stamp: Tue Jan 17 2017 12:26:44 GMT-0800 (PST)

Version Parameters

Component Hierarchy

Expand all| |Collapse all

4 application = <pylith.apps.PyLithApp.InfoApp object at 0x7f084b52c450>
A launcher = <mpi.LauncherMPICH.LauncherMPICH object at 0x7f084b454190>
4 mesh_generator = <pylith.topology.Meshimporter. Meshimporter object at

0x7f084b4a7810>
A distributor = <pylith.topology.Distributor. Distributor; proxy of <Swig Object
of type 'pylith::topology:Distributor * at 0x7f084b453240> >
A data_writer = <pylith.meshio.DataWriterV/TK.DataWriterVTK; proxy
of <Swig Object of type ‘pylith::meshio::DataWriterVTK * at
0x71084b436f90> >
A refiner = <pylith.topology.MeshRefiner. MeshRefiner object at
0x7f084b3e2550>
A reader = <pylith.meshio.MeshlOCubit.MeshlOCubit; proxy of <Swig Object
of type ‘pylith::meshio::MeshlOCubit * at 0x7f084b4531b0> >
A coordsys = <spatialdata.geocoords.CSCart.CSCart; proxy of <Swig
Object of type 'spatialdata::geocoords::CSCart * at 0x7f084b453090> >

A petsc = <pylith.utils.PetscManager. PetscManager object at 0x7f084b442ed0>
4 job = <pyre.schedulers.Job.Job object at 0x7f084b442790>
4 scheduler = <pyre.schedulers.SchedulerNone.SchedulerNone object at
0x7f084b454850>
A problem = <pylith. problems. TimeDependent. TimeDependent object at
0x7f084b44a150>
4 normalizer =
<spatialdata.units.NondimElasticQuasistatic.NondimElasticQuasistatic; proxy of
<Swig Object of type 'spatialdata::units::Nondimensional * at 0x7f084b3c6f30>
>
A bc = <pyre.inventory.FacilityArrayFacility. FacilityArray object at
0x7f084b3c2790>
A4 2z neg = <pylith.bc.DirichletBC.DirichletBC; proxy of <Swig Object of
type ‘pylith::be::DirichletBC * at 0x7f084b37f0f0> >
A db_change = <pylith.utils.NulComponent.NullComponent
object at 0x7f084b0ab2d0>
A db_rate = <pylith.utils.NullComponent.NullComponent object at
0x7f084b0ab110>
A th_change = <pylith.utils.NullComponent.NullComponent object
at 0x7f084b0ab3d0>

4 perf logger = <pylith.perf.MemoryLoaager.MemoryLoaager obiect

Details for Selected Component

¥ Show description ¥ Show location

z_neg = <pylith.be.DirichletBC.DirichletBC; proxy of <Swig Obiject of type
*pylith::bc::DirichletBC * at 0x7084b37f0f0> >
Component information

Full path : [application.problem.bc.z_neg]

Configurable as : dirichletbc, z_neg

Description : No description available.

Set from : {default}

Properties
be_dof (list) = [2)
Description : Indices of boundary condition DOF (0=1st DOF, 1=2nd

DOF, etc).
Set from : {file='step01.cfg’, line=91, column=-1}
up_dir (list) = [0, 0, 1)
Description : Direction perpendicular to horizontal tangent direction that
is not collinear with normal direction.

Set from : {default}
label (str) = face_zneg

Description : Label identifier for boundary.

Set from : {file='stepOL.cfg’, line=92, column=-1}

Facilities (subcomponents)

db_change = <pylith.utils.NullComponent.NullComponent object at
0x7f084b0ab2d0>

Configurable as : nullcomponent, db_change
Description : Database with temporal change in values.
Set from : {default}

db_rate = <pylith.utils.NullComponent.NulComponent object at
0x7f084b0ab110>
Configurable as : nullcomponent, db_rate
Description : Database with rate of change values.
Set from : {default}

th_change = <pylith.utils.NullComponent.NullComponent object at
0x7f084b0ab3d0>
Configurable as : nullcomponent, th_change
Description : Database with time history.

_images/step01-solution1.jpg

_images/step01-solution2.jpg
0.0 yr

Time

e}

°
&
i

_images/step01-solution.jpg

_images/step01-solution.png
1.0 yr

Time:

(W) JusWIBODIdSIP X

_images/step01-solution5.jpg
.0

-2.0e+00

X-displacement (m)

_images/step01-solution3.jpg
Time:

1.0

yr

1.3e+00

y displacement (m)

_images/step01-solution4.jpg
VAVA),
N

VAVAV,S
)

#X#X# NAVAVN
VAVi;AuA"

vAY

KNS EDROROORI0

AVAVAVAV.A AN A IS

XXX
AN

R RPN
R VAV VAV VAVAVAVANATAVAVAY
yAVAVAVAVAVAVAVAVA AVAVAVAY

Y/
RO

R

s
g
(1

TAVAVAVAVAY
S0RE
AV, VA?

VaVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

AN

K R
VAV AV AV e N A TAVATAY Ve
DAV

VA%

s
DORISSEAEK]
REOEERKL

R
RN

nav.xhtml

 Table of Contents

 		
 PyLith

_static/cig_short_pylith.png
PyLith

_images/strikeslip_soln.png
Y (km)

£
<
N

0.5

240
0.3 0.4

Displacement (m)

0.2

0.1

0.0

_images/strikeslip_error_hex8_0250m.png
240

Y (km)

00"

Z (km)

X (km)

log10(Error (m)) 240
-3.0 -2.8 -2.6 -2.4 -2.2

_images/step08-solution.jpg
=

_images/strikeslip_error_hex8_1000m.png
240

Y (km)

00"

Z (km)

X (km)

log10(Error (m)) 240
-3.0 -2.8 -2.6 -2.4

_images/strikeslip_error_hex8_0500m.png
240

Y (km)

00"

Z (km)

X (km)

log10(Error (m)) 240
-3.0 -2.8 -2.6 -2.4 -2.2

_images/strikeslip_error_tet4_0500m.png
240

Y (km)

0.0
0.0

Z (km)

X (km)

log10(Error (m)) 240
-3.0 -2.8 -2.6 -2.4 -2.2

-2.0

_images/strikeslip_error_tet4_0250m.png
240

Y (km)

o
00"

Z (km)

X (km)

log10(Error (m)) 240
-3.0 -2.8 -2.6 -2.4 -2.2

_images/strikeslip_geometry.png
Y (km)

Z (km)

X (km)

_images/strikeslip_error_tet4_1000m.png
00"

Z (km)

log 10(Eror (m)
-2.6 -2.4

240

_images/step07-solution.jpg
Time: 100.0 yr

X displacement (m)

_static/plus.png

_static/minus.png

_static/images/cig_logo_dots.png
COMPUTATIONAL
INFRASTRUCTURE
for GEODYNAMICS

_static/images/ORCIDiD_icon32x32.png

_static/images/cig_short_pylith.png
PyLith

_static/images/cig_short_nolabel.png

_static/file.png

_images/step03-solution2.jpg
Time: 190.0 yr

1.9e+00

-1.9e+00

y displacement (m)

_images/step03-solution4.jpg
s

o
Y
i)

x displacement (m)

_images/step03-solution3.jpg
\/]
OOREKS

R

\WAV

R SRk
R IR LIRS
L L s s Arh A L
R KRNI
B RRIISSIRRIS
s N SAVAVAYAY

AVAVAY
R RDOREIRIIS
fﬁé%%%ﬁz%m%@%ﬁ V4
RN VTS

VAVAVAVAY

VAVAY

KRR
) 5
AV

N,
A

\

/ AN

_images/step03-solution.jpg
1.0 yr

Time:

1.2e+00

(W) JusUIEODIdsIP-X

vz_x

-1.2e+00

_images/step03-solution1.jpg
0.0 yr

Time:

(W) ‘Bo Juswsop|dsig

— 0.0e+00

_images/step03-solution.png
1.0 yr

Time:

(W) JusWIBODIdSIP X

2.6e-10
-1.6e+00

©
e

_images/cascadia.png
Juan de Fuca Plate

4\ Volcano

i Earthquakes

_images/cig_short_nolabel.png

_images/ORCIDiD_icon32x32.png

_images/step02-solution5.jpg
Time: 200.0 yr

2.5e+00

-2.8e+00

x displacement (m) X

_images/step02-solution4.jpg
avavatavamainssi:
S ToTETETTANES:
B

¥,

XX
o
2
2%

KX

o
SN

R
RAX

2

\VAVAVAVAVAVAVAVAVAY,
EOCROR,
%
&

N/
<)

AV

A

J)YAVAVAVAVAVAY
YAV
\AA

ATATAVAVAVAVAvAVAvAYY

AN
aVAVAYAVAVAUSY
\VAVAVAVAVAVAVA S

_images/step05-solution2.jpg
— 4.5e-01

-5.5e01

y displacement (m)

_images/step06-faults-wrong2.jpg

_images/step06-faults-wrong1.jpg

_images/step06-solution.jpg

_images/step05-solution.jpg
4.0 yr

Time:

—1.2e+00

(W) JusUIEODIdsIP-X

-1.2e+00

_images/step05-solution1.jpg
1.0 yr

Time:

;

(W) JusuISODIdsIP X

_images/step05-solution.png
4.0 yr

Time:

(W) JusWIBODIdSIP X

2.8e+00
-2.8e+00

I

_images/step04-solution2.jpg
Time:

1.0 yr

DYAVAVAVAVAVAVAVAVA%4 AVAVAVAVAVAVAVAVAVY
\VAVAVAVAVAVAVAYA: 32 "AVAVAVAVAY, v
SRS REEERDOK]

:A
AVAVAVAVAVAN
0
<\
A
A
o
XK
RO
AVAVAN

54
[DAVAVAVAVAVAYATASH, 5 oY
ORI O A
P AVAAVAVAVI VS G GAVAVIS
KRR
VaVAVAVAY DRK
RGN T
CARERES SO
RSB VISEN SRR %‘

pVAVAAY

%
K]

PO

Vi SVAVAY SOV AVAVAVAY <]
S ey VAVAVAYY

KISCOAREER "ﬂﬁﬁuuuvmga

VAVAVAVAVAVAN g

\VAVAVAVAVAVAVA

\VAVAVAVAVAVAVY :

/AVAVAVAVAVAVAVAV
AVAVAVAVAVAVAVAVAN

2

AY

N
Y
R

7
WYAVAVAVAVAVAVAVAVA

o
o
RO

2N

%
KO
a
Vare
X%

%

a
X
ko
V%
XX
VAV,

VAVAVAVAVA

K

KX
\
K
VA"
g
X
i
L1
N
]
I
K]
I
]
VaX
\/

%‘
%
'e
H
Kl
S
I
Kl
K/
X

PAVAVAVAVAVAVAVAVA

— 3.5e-01
02

02

—-4.5e-01

y displacement (m)

_images/step04-solution1.jpg
(0% -
ININISINCTS
VAN IS AN,

_images/step04-solution3.jpg
Time: 100.0 yr

-5.1e+00

X displacement (m) X

_images/step04-gpsstations.jpg

_images/step04-solution.jpg
(W) JusUIEODIdsIP-X

-1.2e+00

_images/step04-solution.png
1.0 yr

Time:

(W) JusWIBODIdSIP X

0.0e+00
-1.6e+00

0
S -

_images/classdiagram_output.png

_images/classdiagram_bc.png

_images/classdiagram_material.png

_images/classdiagram_pylithapp.png
pythia.pyre.components.Component

[pythia.pyre.components. Component
[Petsoapplication |

PyLithApp %

_images/classdiagram_solution.png

_images/classdiagram_physics_fem.png

_images/classdiagram_problem.png
pythia.pyre.components.Component pythia.pyre.components.Component

spatialdata::units::Nondimensional

PetscComponent
Material
BoundaryCondition
Python Problem C++ Problem
normalizer normalizer FaultCohesive
materials materials
be be i i
interfaces interfaces
gravity field gravity field
solution solution
observers observers Integrator
integrators
constraints S
ProgressMonitor

Python TimeDependent C++ TimeDependent

monitor

InitialCondition

_images/conceptualmodel.png

_images/cubit-hex.jpg
Nodeset: boundary_xneg

_images/cubit-quad.png

_images/cubit-quad1.png
R e

/]
LT RSO,
T T
R R %

_images/cubit-mesh.jpg
Nodeset: fauli_slabtop

_images/cubit-quad.jpg

_images/cubit-tri.png

_images/cubit-tri1.png
AT TATA AT TATA VAT TATAATA AT
s
RORCCR ROt

e

TAVA VAN AL S ATAVA
KRR AR AR LA

AV,
N

\/
N

NN
N

VAVA
\Vi

PEAETNANAVA
SAVAVAVAVAY

v

v

PVDDP’DPD‘P)P’”

2

_images/cubit-tet.jpg
Nodeset: boundary_xneg

_images/cubit-tri.jpg

_images/difficult.png

_images/easy.png

_images/expert.png

_images/gitworkflow_branch.png
main feature-powerlaw main feature-powerlaw
fetch
branch,
[commit
push [commit
[© commit
push [commit
pull request
fetch

_images/gmsh-tri.png
TaViVaVAVAVAAVAVAY
ggﬂ%%ﬂ“ﬁﬁé’
7

T
S,

5
i
i

it NSV
e A TaTaTe)
ROCEARRE]

ROEEARA]
R i
RS
e Sk
R
N e
RE
KRRl
St
Av Ammm; o
SR
S
SRR
A
L
i
]
2
Yy SOgsOd
SRR
“V <
R aratiy
A"»§4

<

_images/gitworkflow_repositories.png
pull request

clone, pull

<_ >

commit

_images/gmsh-hex.png

